DIGITAL

Titan Super Quad Series Titan Quad 2000 Series Titan Quad Series
 Titan 930 Series

High Brightness Digital Video Projector

- INSTALLATION AND QUICK-START GUIDE
- CONNECTION GUIDE
- OPERATING GUIDE
- REFERENCE GUIDE

About This Document

Please follow the instructions in this manual carefully to ensure safe and long-lasting use of the projector.
Keep this manual handy for future reference.

Symbols used in this manual

Many pages in this document have a dedicated area for notes. The information in that area is accompanied by the following symbols:

WARNING: this symbol indicates that there is a danger of physical injury to yourself and/or damage to the equipment unless the instructions are closely followed.

ELECTRICAL WARNING: this symbol indicates that there is a danger of electrical shock unless the instructions are closely followed.NOTE: this symbol indicates that there is some important information that you should read.

Product revision

Because we at Digital Projection continually strive to improve our products, we may change specifications and designs, and add new features without prior notice.

Legal notice

rademarks and trade names mentioned in this document remain the property of their respective owners
Digital Projection disclaims any proprietary interest in trademarks and trade names other than its own.

Copyright © 2015 Digital Projection Ltd. All rights reserved.

Introduction

Congratulations on your purchase of this Digital Projection product!

Your projector has the following key features:

- Support for most 3D standards (if your projector is a 3D model)
- Full range of digital and legacy analog inputs
- Control of most aspects of the projector's operation via LAN and RS232
- Support for a number of aspect ratios and screen sizes
- Nonlinear warp adjustment by moving points on an interpolated grid
- Ceiling mount and rear-screen installation options
- Simultaneous display of two sources via Picture-In-Picture
- Long lamp life
- Motorised lens mount

A serial number is located on the back of the projector. Please record it here:
\square

CONTENTS

INSTALLATION AND QUICK-START GUIDE 1
CONNECTING THE POWER SUPPLY 3
PROJECTOR OVERVIEW 4
Front and rear views4
Control panel indicators 5
Connection panel indicators 6
REMOTE CONTROL 8
Infrared reception 8
Remote control 105-023 Rev B 9
Remote control 105-023 Rev A 11
Remote control troubleshooting 13
POSITIONING THE SCREEN AND PROJECTOR 14
Desktop mount 14
Ceiling mount 14
Adjusting the optional rigging frame 15
Adjusting pitch, roll and yaw 16
FITTING THE LENS 17
OPERATING THE PROJECTOR 18
Switching the projector on. 18
Switching the projector off. 18
Selecting an input signal or test pattern 19
Input signal 19
Test pattern 19
Adjusting the lens 20
Zoom.. 20
Focus. 20
Shift 20
Adjusting the image. 21
Orientation. 21
Keystone 21
Picture 21
CONNECTION GUIDE 23
SIGNAL INPUTS AND OUTPUTS 25
Rear connection panel 25
Side connection panel on 3D projectors 27
Special considerations when using inputs 9-11 28
Differences between inputs 9-11 and inputs 1-8. 28
Input and processing architecture 28
EDID on the DVI and VGA inputs 28
Using HDMI/DVI switchers with the projector 29
DVI input connection example. 30
3D connections 31
3D sources up to 60 Hz requiring frame doubling and left/right interleaving 31
3D sources above 60 Hz not requiring frame doubling. 31
Dual Pipe 3D 31
3D Sync in. 32
3D Sync out 32
3D connection examples 33
CONTROL CONNECTIONS 34
LAN connection examples 35
RS232 connection example 36

CONTENTS (continued)

OPERATING GUIDE 37
USING THE MENUS 40
Menus and sub-menus 40
Drop-down lists 41
Sliders 42
Commands 42
Editing fields 43
USING THE PROJECTOR 44
Main menu 44
Lens menu 45
Zoom. 45
Focus 45
Calibrate Zoom and Calibrate Focus 45
Center Lens 45
Nudge. 46
Lens Presets 46
Image menu 47
Video Filters. 47
VGA Setup.. 47
Color menu. 48
Gamut 48
Black Level and Gain sliders 48
Geometry menu 49
Aspect Ratio. 49
Overscan. 49
Size \& Position. 50
Blanking 50
Geometry Engine. 51
Edge Blend menu. 57
Overview 57
Array H Position and V Position. 58
S-Curve Value 59
Blending 61
Segmentation 62
Blend Width. 64
Black Level Uplift 64
Reduce Black Level Uplift Width 65
Blending images from multiple projectors 68
Before you start. 68
Edge Blend procedure 69
PIP menu 77
3D menu. 78
3D types. 79
Some 3D settings explained 81
Dark Time. 81
Source Dominance 81
Sync Offset 81
Frame Rate Multiplier. 82
Lamps menu 83

CONTENTS (continued)

Setup menu 84
Reset Default Settings 84
Input Configuration 85
Network 86
On Screen Display 89
System. 90
Setting up an IR address 91
Information menu 92
Lamps 92
Configuration. 93
REFERENCE GUIDE95
THE DMD ${ }^{\text {TM }}$ 98
CHOOSING A LENS 100
Basic calculation 101
Basic calculation example 102
Full lens calculation 103
Introducing TRC 103
Calculating TRC 104
TRC table 104
Calculating the throw ratio with TRC 105
Full lens calculation example. 106
SCREEN REQUIREMENTS 107
Fitting the image to the DMD ${ }^{\text {M }}$ 107
SX+ images displayed full width 107
SX+ images displayed full height 107
1080p images displayed full width 108
1080p images displayed full height. 108
WUXGA images displayed full width 109
WUXGA images displayed with a height of 1080 pixels. 109
WUXGA images displayed full height 110
Diagonal screen sizes 111
Fitting the image to the screen. 112
Positioning the screen and projector 113
POSITIONING THE IMAGE 114
Maximum offset range. 116
ASPECT RATIOS EXPLAINED 117
Aspect ratio examples for DMD $^{\text {TM }}$ resolution $\mathrm{SX}+(S X G A+$). 118
Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution 1080p 121
Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution WUXGA 124
Aspect ratio example: TheaterScope 127
FRAME RATES AND PULLDOWNS EXPLAINED 128
Interlaced and progressive scan 128
Frame rates of image sources 128
Pulldowns - conversion into destination formats 129
2:3 (normal) pulldown 129
2:3:3:2 (advanced) pulldown. 130
APPENDIX A: LENS PART NUMBERS 131

CONTENTS (continued)

APPENDIX B: LENS CHARTS 132
How to use the lens charts. 132
How to find the right lens chart. 133
1080p (1920×1080 pixe/s) 133
WUXGA (1920 x 1200 pixels). 134
SX+ (1400 x 1050 pixels) 135
DMD ${ }^{\text {TM }}$ resolution 1080p / WUXGA, full width images 136
$D^{\text {DM }}{ }^{\text {TM }}$ resolution 1080p, 1.25:1 images 138
DMD ${ }^{\text {TM }}$ resolution 1080p, 1.33:1 images 140
DMD ${ }^{\text {TM }}$ resolution 1080p, 1.6:1 images 142
DMD ${ }^{\text {TM }}$ resolution 1080p, 1.66:1 images 144
DMD ${ }^{\text {M }}$ resolution WUXGA, 1.25:1 images. 146
DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.33:1 images. 148
DMD $^{\text {TM }}$ resolution $\mathrm{SX}+$, full width images 150
DMD ${ }^{\text {TM }}$ resolution $S X+$, 1.25:1 images 152
APPENDIX C: SUPPORTED SIGNAL INPUT MODES 154
2D input modes 154
3D input modes 157
APPENDIX D: MENU MAP 159
Input Selection 159
Test Pattern 159
Lens 159
Image 160
Color. 160
Geometry 161
Edge Blend. 162
PIP 163
3D. 163
Lamps 163
Setup. 164
Information 165

CONTENTS (continued)

APPENDIX E: WIRING DETAILS 166
Signal inputs and outputs 166
Input 1: VGA. 166
Input 2: HDMI 167
Output: SPDIF 167
Input 3: DVI. 168
Input 4: 3G-SDI 169
Input 5: Composite 1 169
Input 6: S-Video 169
Input 7: Component. 169
Input 8: CVBS 169
Input 9: MAIN/DVI, 170
Input 10: SUB/HDMI 171
Control connections 172
Update port. 172
Wired remote control 172
RS232 173
LAN connection 173
APPENDIX F: GLOSSARY OF TERMS 174

TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIONS 187 187
Models.
Models. 187 187
Inputs and outputs 188
Bandwidth 188
Remote control and keypad 188 8
Automation control
Automation control 188 188
Color temperature
Color temperature 188 188
Lamps 189
Lenses. 190
Lens mount 190 0
Mechanical mounting 190
Orientation 190
Orientation.
Electrical and physical specifications 191
Safety \& EMC regulations 191
Accessories. 1911

[^0]
DIGITAL

Titan Super Quad Series Titan Quad 2000 Series Titan Quad Series
 Titan 930 Series

High Brightness Digital Video Projector

- INSTALLATION AND QUICK-START GUIDE

IN THIS GUIDE

Connecting The Power Supply 3
Projector Overview. 4
Front and rear views4
Control panel indicators 5
Connection panel indicators 6
Remote Control. 8
Infrared reception. 8
Remote control 105-023 Rev B 9
Remote control 105-023 Rev A 11
Remote control troubleshooting 13
Positioning The Screen And Projector 14
Desktop mount 14
Ceiling mount 14
Adjusting the optional rigging frame 15
Adjusting pitch, roll and yaw 16
Fitting The Lens 17
Operating The Projector 18
Switching the projector on 18
Switching the projector off. 18
Selecting an input signal or test pattern 19
Input signal. 19
Test pattern 19
Adjusting the lens 20
Zoom. 20
Focus. 20
Shift. 20
Adjusting the image 21
Orientation 21
Keystone. 21
Picture 21

Connecting The Power Supply

Lift the cable lock up, push the mains connector in firmly and push the lock down to secure the cable.
(1) AC mains inlet with cable lock

Front view of the projector

Notes

Use only the power cable provided.

Ensure that the power outlet includes a ground connection as this equipment MUST be earthed.

Handle the power cable carefully and avoid sharp bends. Do not use a damaged power cable.

Projector Overview

Front and rear views

1 Front infrared window
2 Air inlets with air filters
3 Lens
4 Lens motor
(5) Mains input
(6) Adjustable feet

7 Air outlets
(8) Rear connection panel with infrared window

9 Control panel
(10) Side connection panel

Control panel indicators

(1) Power indicator

Behavior		Meaning
Off		The projector is switched off.
On (amber)	O	The projector is in Standby mode.
On (green)		The projector is switched on (Normal mode).

(2) Shutter indicator

Behavior		Meaning
On (amber)	\bigcirc	The shutter is closed.
On (green)	\bigcirc	The shutter is open.

Notes

Thos Only the controls shown highlighted are used on this projector.

During startup all LEDs light up at the same time to indicate the projector is carrying out a self-test.

Connection panel indicators

1 Lamps 1-4 indicators
Behavior

Meaning

On (green) The lamp is switched on (100\%).
On (amber) The lamp is running on less than full capacity: 80-99\% for Titan Quad / Titan 800 86-99\% for Titan Super Quad / Titan Quad 2000 / Titan 930

Flashing (green)
Flashing (amber) The lamp is warming up.

The lamp is cooling down.
On (red)
Projector in standby: Lamp Timer Error (call service) Projector on: Ballast Comms Error (call service)
Flashing (red) Projector in standby: Lamp Error on previous operation Projector on: Lamp / Interlock Error
(2) Error indicator

Behavior

Meaning

$\begin{array}{lcl}\text { On (red) } & \text { Voltage Error } \\ \text { Flashing (red) } & \text { Fan / System Error }\end{array}$
3 Infrared indicator

Behavior

Flashing (blue)

Meaning

The projector is receiving input from the remote control or keypad.
(4) Input indicators

Behavior

Meaning

On (green) Input selected. Signal detected and in range.

Flashing (green) -

Rear connection panel

Side connection panel

Notes

Thos For more information about the connection panels, see the Connection Guide.

I-s A red LED always indicates an error. If you receive an error indication, restart the projector. If the problem persists, contact your dealer.

The The side connection panel is available on 3D models only.

Notes

Tos For more information about the connection panels, see the Connection Guide

3
The side connection panel is available on 3D models only

5 Sync in indicator

Behavior	Meaning
On (green)	Valid sync in.

6 Sync out indicator

Remote Control

The projector is equipped with one of the remote control devices shown here. The device on the left ($105-023$ Rev B) was introduced in June 2013; a projector purchased before that date is equipped with the device on the right, 105-023 Rev A.
Both devices and their functions are described in the following pages.

Infrared reception

The projector has infrared sensors at the front and back.
The angle of acceptance is 40°. Make sure that the remote control is within the angle of acceptance when trying to control the projector.

Notes

T-s Infrared reception is confirmed by the blue IR LED flashing on the control panel.

The infrared receivers are disabled when a remote control is connected via a cable. For more information, see Contro! Connections in the Connection Guide.

Remote control 105-023 Rev B

(1) Transmit indicator

Flashes when the remote control sends a signal to the projector. Lights solidly when the projector is in LENS ADJUSTMENT mode.

2 Power ON / OFF
3 ALT
Acts as a shift key. To use, press and hold this button, then press a green-labeled button.

4 Shutter OPEN / CLOSE

5 MENU
Access the projector OSD (on-screen display).
6 Navigation
Navigate through the menus with the arrows, confirm your choice with OK.
7 Input selection
Select input source.
$\mathbf{9}, \mathbf{0}$ and $\mathbf{1 0 +}$ are not used on 2D projectors as they are used for inputs on the side connection panel.

8 Image adjustment
Adjust brightness, contrast and gamma.
Press this button while holding the ALT button down to switch red, green and blue channels on and off.

9 Lens presets
To recall a lens preset, press and hold LOAD, then press a number button $\mathbf{1}$ to $\mathbf{5}$.
To save a lens preset, press and hold SAVE, then press a number button $\mathbf{1}$ to $\mathbf{5}$.
10 Remote control backlight ON / OFF
Make the remote control buttons glow in the dark, or switch this feature off.

Remote control 105-023 Rev B

Ins For more information about LENS ADJUSTMENT mode, see Adjusting the lens further in this guide.

Thos Input selection buttons:

- $\mathbf{1}$ to $\mathbf{8}$ - as labeled.
- 9 selects Main/DVI (input 9, side connection panel).
- $\mathbf{0}$ selects Sub/HDMI (input 10, side connection panel).
- 10+ selects Dual Pipe (both inputs 9 and 10).

Notes
3-sis Only the controls shown highlighted
are used on this projector.
Notes
Iु Only the controls shown highlighted
are used on this projector. are used on this projector.
continues on next page...

Remote control 105-023 Rev B - continued from previous page

11 Lens controls

Adjust position, zoom and focus.
Perform calibration when you change the lens.
$(12$ INFO
Open the Information menu.
13 TEST
Switch to test pattern.
14 IR address
Set up an address to match the IR address of a projector.

Remote control 105-023 Rev A

1 Transmit indicator
Flashes when the remote control sends a signal to the projector. Lights solidly when the projector is in LENS ADJUSTMENT mode.

2 Power ON / OFF
3 INFO
Open the Information menu.
4 MENU
Access the projector OSD (on-screen display).
5 Navigation
Navigate through the menus with the arrows, confirm your choice with OK.
6 Input selection
Select input source.
9, 10+ and \# are not used on 2D projectors.
7 Settings
These buttons allow you to change various settings directly from the remote, without opening the OSD:

- BRI, CON, SAT - adjust brightness, contrast and saturation
- PHASE - adjust phase for VGA signals
- MAGNIFY, POS, PAN - access the Size and Position menu
- OSD - edit OSD settings
- ASPECT - change the aspect ratio

8 Lens presets
To recall a preset, press and hold PRESET, then press a number button $\mathbf{1}$ to $\mathbf{5}$. To save a preset, press and hold SAVE, then press a number button $\mathbf{1}$ to $\mathbf{5}$
continues on next page...
mote control 105-023 Rev A

Notes

This Only the controls shown highlighted are used on this projector.

I-s For more information about LENS ADJUSTMENT mode, see Adjusting the lens further in this guide.

Tos Input selection buttons:

- $\mathbf{1}$ selects VGA (input 1)
- 2 selects HDMI (input 2)
- $\mathbf{3}$ selects DVI (input 3)
- $\mathbf{4}$ selects 3 -SDI (input 4)
- $\mathbf{5}$ selects Composite 1 (input 5)
- $\mathbf{6}$ selects S-Video (input 6)
- $\mathbf{7}$ selects Component (input 7)
- $\mathbf{8}$ selects Composite 2 (input 8)
- 9 selects Main/DVI (input 9, side connection panel)
- 10+ selects Dual Pipe (both inputs 9 and 10, side connection panel)
- $\mathbf{0}$ selects Sub/HDMI (input 10, side connection panel)

Remote control 105-023 Rev A - continued from previous page

9 OSD ON/OFF

Switch projector status messages on and off.
10 Shutter OPEN / CLOSE

11 Lens controls
Adjust position, zoom and focus.
Perform RPY calibration when you change the lens.
12 Color channels
Switch red, green and blue channels on and off.
13 TEST
Switch to test pattern.
14 IR address
Set up an address to match the IR address of a projector.
15 Remote control backlight ON / OFF
Make the remote control buttons glow in the dark, or switch this feature off.

Remote control 105-023 Rev A

Notes

This Only the controls shown highlighted are used on this projector.

Thos For more information about IR addresses, see Setting up an IR address in the Operating Guide.

Remote control troubleshooting

The remote control is shipped with no battery fitted. Remove the back cover and insert the supplied cells while observing the correct cell polarity.

If the projector fails to respond to keypress on the remote control, consider the following checks.

Does the Transmit indicator flash when a button is pressed?

The blue Transmit Indicator 1 should be dark when the remote control is not being used and flash when a button is being pressed.

- If it emits a solid light when a button is not being pressed, the remote control is in LENS ADJUSTMENT mode. Press EXIT or wait up to ten seconds to exit LENS ADJUSTMENT mode.
- If the Transmit indicator fails to flash when a key is pressed, it might be time to replace the battery. Use only Alkaline AAA (LR03) cells for best results.

Does the rear connection panel respond when a remote control button is pressed?
When a button is pressed on the remote control, the infrared indicator 2 on the rear connection panel should flash blue. If this does not happen:

- Check that the angle of acceptance is met.
- Check that the projector address matches the remote control address.
- If none of the above fixes the problem, it might be time to replace the battery. Use only Alkaline AAA (LR03) cells for best results.

Transmit indicator on the remote control

Infrared indicator
on the rear connection panel

Notes

Thos The infrared receivers are disabled when a remote control is connected via a cable.

For information about the angle of acceptance, see Infrared reception earlier in this guide.

See Setting up an IR address in the Operating Guide.

Positioning The Screen And Projector

1. Install the screen, ensuring that it is in the best position for viewing by your audience.
2. Position the projector, ensuring that it is at a suitable distance from the screen for the image to fill the screen.

Desktop mount

If the projector is to be operated from a flat surface such as a projector table, adjust the projector level by turning the four feet under the chassis. Set the adjustable feet so that the projector is level, and perpendicular to the screen.

Ceiling mount

Inverted installation is recommended for maximum lens offset.
Remove the four adjustable feet 1 and use the four M10 fixing holes 2 for ceiling mounting.
You can also use the optional rigging frame, or mount two projectors together using the optional Titan 40K assembly.

Notes

Ensure that there is at least 30 cm (12 in.) of space between the ventilation outlets and any wall, and 10 cm (4 in .) on all other sides.
Do not place heavy objects on top of the projector chassis. Only the chassis corners and the rigging frame are capable of withstanding the weight of another projector.
Do not place the projector with its front panel down on a surface, as this may damage the lens or the lens release lever.

Backup safety chains or wires should always be used with ceiling mount installations.
Do not tilt the projector more than $\pm 12^{\circ}$ in either direction, in desktop or ceiling mode, when in use, as this may cause serious lamp failure, damage the lamp module and cause extra cost on replacement.

Th See also Adjusting the optional rigging frame further in this guide.

Adjusting the optional rigging frame

1. Remove the four adjustable feet.
2. Secure the rigging frame to the projector, as shown here, making sure that the rigging frame is in its upright position and the cable attachments are at the top. Three screws secure each of the adjuster brackets to a corner handle.
3. Adjust pitch, roll and yaw as required.
(1) Vertical adjuster

2 Horizontal adjuster
(3) Frame couplings
(4) Fixing screws

Notes

!Always allow the projector to cool for 5 minutes before disconnecting the power or moving the projector.

Ensure at least 30 cm (12 in.) of space is left between the ventilation outlets and any wall, and 10 cm (4 in .) on all other sides.
Do not stack more than 3 projectors.
Do not place heavy objects on top of the projector chassis. Only the chassis corners and the rigging frame are capable of withstanding the weight of another projector.
Do not place the projector with its front panel down on a surface, as this may damage the lens or the lens release lever.

Backup safety chains or wires should always be used with ceiling mount installations.
Do not tilt the projector more than $\pm 12^{\circ}$ in either direction, in desktop or ceiling mode, when in use, as this may cause serious lamp failure, damage the lamp module and cause extra cost on replacement.

Adjusting pitch, roll and yaw

- To adjust the pitch, turn either the front pair or the rear pair of vertical adjusters, taking care to turn both adjusters by the same amount.
- To adjust the roll, turn either the left pair or the right pair of vertical adjusters, taking care to turn both adjusters by the same amount.

Roll

Yaw

- To adjust the yaw, turn the single horizontal adjuster at the front.

Fitting The Lens

1. Turn the lens release lever clockwise so that it is pointing upwards, to open the lock fully. 1
2. Remove the rear lens cap from the lens.
3. Insert the lens into the lens aperture, making sure that the plug on the zoom drive mechanism lines up with the socket on the front of the projector, then push the lens in firmly as far as it will go. 2
4. Turn the lens release lever anti-clockwise to the mid-position. 3
5. The lens can now be pushed in further. Push the lens in firmly as far as it will go.

The lens release lever should always be set to the locked position to prevent the lens from falling out.

Do not place the projector with its front panel down on a surface, as this may damage the lens or the

Notes

Before changing the lens, always make sure the projector is switched off and fully disconnected from its power supply.

Always allow the projector to cool for five minutes before disconnecting the power or moving the projector.

lens release lever.

Avoid touching the surface of the lens as this may result in image impairment.

Take care to preserve the original lens packaging and protective caps for future use.

Operating The Projector

Switching the projector on

1. Connect the power cable between the mains supply and the projector. Switch on at the switch next to the power connector
2. Wait until the self-test has completed and the standby indicator on the projector control panel shows amber. The lamp will be off and the projector will be in STANDBY mode.
3. Press $\mathbf{O N}$ on the remote control or the control panel and hold for three seconds, to switch the projector ON. The power indicator on the control panel will show green, the lamp will light and the shutter will open.

Switching the projector off

1. Press OFF on the remote control or the control panel, and hold for three seconds. The power indicator on the control panel will show amber, the lamp will go out and the cooling fans will run for a short time until the projector enters STANDBY mode.
2. If you need to switch the projector off completely, switch off at the mains power switch next to the power connector and then disconnect the power cable from the projector.

Notes

The self-test is running when all the EEDs on the control panel are lit.

Use only the power cable provided.

Ensure that the power outlet includes a ground connection as this equipment MUST be earthed.

Handle the power cable carefully and avoid sharp bends. Do not use a damaged power cable.

Always allow the lamp to cool for 5 minutes before:

- disconnecting the power
- moving the projector

Selecting an input signal or test pattern

Input signal

1. Connect an image source to the projector.
2. Switch to the input you want to display:

- Press one of the input buttons on the remote control, or
- Open the On-screen display (OSD) by pressing MENU. Select an input signal from the Input Selection menu, using the UP and DOWN arrow buttons, then press OK.

Test pattern

To display a test pattern:

1. Open the OSD by pressing MENU
2. Select Test Pattern from the Input Selection menu, using the UP and DOWN arrow buttons, then press OK.
3. Select a pattern from the Test Pattern menu, using the UP and DOWN arrow buttons, then press OK.
4. Close the OSD by pressing MENU again.

PROJECTOR MODEL	
Input Selection	Composite 1
Test Pattern	Composite 2
Lens	S-Video
Image	Component
Color	VGA
Geometry	3G-SDI
Edge Blend	DVI
3D	HDMI
Lamps	Test Pattern
Setup	Main / DVI
Information	Sub $/$ HDMI

Notes

T-s For full details of how to use the controls and the menu system, see the Operating Guide.

PROJECTOR MODEL	
Input Selection	Composite 1
Test Pattern	Grey V Bars
Lens	Grey V Bars
Image	Grey H Bars
Color	Aspect Test
Geometry	Alignment Grid
Edge Blend	Warp Adjust
3D	SMPTE
Lamps	Checkerboard
Setup	White Field
Information	Black Field

3-s If the projector is switched off while in TEST PATTERN mode, it will still be in TEST PATTERN mode when switched on again.

Adjusting the lens

The lens can be adjusted using the Lens menu, or:

Zoom

- Press ZOOM, then use the UP and DOWN arrow buttons on the keypad or remote control to adjust the size of the image on the screen. When the adjustment is finished, press EXIT.

Focus

- Press FOCUS, then use the UP and DOWN arrow buttons on the keypad or remote control to adjust the focus. When the adjustment is finished, press EXIT.

Shift

- Press SHIFT, then use the UP, DOWN, LEFT and RIGHT arrow buttons on the keypad or remote control to adjust the position of the image on the screen. When the adjustment is finished, press EXIT.

Notes

This When any of the three lens adjustment buttons is pressed, the blue Transmit indicator on the remote control will light for 10 seconds:
After 10 seconds, if no adjustment has been made, the indicator will go out and the lens adjustment button must be pressed again to resume adjustment.
To end the adjustment before 10 seconds has elapsed, press the EXIT button.

All other adjustments will be locked out until the lens adjustment is ended.

Adjusting the image

Orientation

- This can be set from the Setup menu.

Select the orientation which suits the positioning of the projector.

Keystone

- This can be set from the Geometry menu.

Picture

- Settings such as Brightness and Contrast can be set from the Image menu.
- Settings can be accessed from the remote control as well. Depending on the remote you are using:
- On 105-023 Rev B, press BRI, CON or GAMMA to set Brightness, Contrast or Gamma respectively.
- On 105-023 Rev A, press BRI, CON or SAT to set Brightness, Contrast or Saturation respectively.

SETUP	
Orientation	Desktop Front
Input Configuration	Lowest
Network	
On Screen Display	
System	
Reset Default Settings	

GEOMETRY		
Aspect Ratio		Source
Overscan	0	
Size \& Position		-
Blanking		-
- Geometry Engine		Off
\%H Keystone	0	0
- V Keystone	0	
- Pincushion / Barrel	0	
\Rightarrow Rotation	0	
- Warp Map		Off
Cornerstone		-

IMAGE			
Brightness	0		
Contrast	0		
Gamma	0	1.0	
Hue	0		
Saturation	0		
Black Level Offset			
V Position	0		
H Position	0		
Video Filters			
VGA Setup			

This page is intentionally left blank.

DIGITAL

Titan Super Quad Series Titan Quad 2000 Series Titan Quad Series
 Titan 930 Series

High Brightness Digital Video Projector
. CONNECTION GUIDE

IN THIS GUIDE

Signal Inputs and Outputs 25
Rear connection panel. 25
Side connection panel on 3D projectors 27
Special considerations when using inputs 9-11 28
Differences between inputs $9-11$ and inputs 1-8. 28
Input and processing architecture 28
EDID on the DVI and VGA inputs 28
Using HDMI/DVI switchers with the projector 29
DVI input connection example 30
3D connections31
3 D sources up to 60 Hz requiring frame doubling and left/right interleaving 31
3D sources above 60 Hz not requiring frame doubling. 31
Dual Pipe 3D 31
3D Sync in. 32
3D Sync out 32
3D connection examples 33
Control Connections 34
LAN connection examples 35
RS232 connection example 36

Signal Inputs and Outputs

Inputs 1-8, on the rear of the projector, are limited input frame rates up to 60 Hz , but provide access to the full geometric adjustment capabilities, including Blend and Warp.

The side inputs 9, 10 and 11 on 3D projectors provide a very direct path to the DMD $^{\text {TM }}$ display, with minimal latency and high frame rate capability. Their geometrical adjustment capabilities are limited in comparison with inputs 1-8.

Rear connection panel

1) VGA (input 1)

Receives analog signal from a computer. When using this input, it is best to use a fully wired VGA cable (with a blue connector shell) to connect the source to the projector. This will allow the source to determine the projector's capabilities via DDC and show an optimized image
Use Auto Setup in the Image/VGA Setup menu.
2 HDMI (input 2)
Receives digital signal from HDMI-compliant devices. The audio from the HDMI 1 source is available on the SPDIF output.
3 SPDIF
This is a digital output.
Compatible audio sample packets on the HDMI input stream are decoded by the projector and output on the SPDIF connector.
4 DVI (input 3)
Analog or Digital DVI-I
This input has a DVI-I connector, which can receive either analog (DVI-A) or digital (DVI-D) signal from a compatible source.
Set DVI-I Port in the Setup/Input Configuration menu to choose between Analog and Digital.
Sources up to:

- 1920×1080 resolution for 1080 p models
- 1920×1200 resolution for WUXGA models
$24-60 \mathrm{~Hz}$; up to 12 bits per color. Supports HDCP.
(the list continues overleaf)

Rear Connection Panel

Notes

Tos For more VGA settings, see Image menu in the Operating Guide.

Ins For further information on setting up the DVI 1 input, see Input Configuration in the Operating Guide.

This WUXGA (1920x1200) is only available at 50 and 60 Hz on Input 3. For WUXGA 3D, we recommend the use of Input 9 .

Thos For more information about the difference between the two connection panels, see Special considerations when using inputs $9-11$ further in this section.

This For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide.

Rear connection panel (continued)

5 3G-SDI (input 4)
Uses a BNC connector to receive uncompressed, unencrypted digital video.
If two video streams are being transmitted, set 3G Level B Stream in the Setup/Input Configuration menu to choose between the two streams

6 Composite 1 (CVBS 1) (input 5)
Uses a BNC connector to receive composite video.

S-Video (input 6)
Uses a 4-pin mini-DIN connector.
8 Component (input 7)
Uses either RGsB/RGBS, or YPbPr
When using RGsB or RGBS:

- Set Component Colour Space in the Setup/Input Configuration menu to RGB.
- Set Component Sync Type in the Setup/Input Configuration menu to Auto, except when the projector has problems selecting between $\mathbf{3}$ Wire (RGsB) and 4 Wire (RGBS)
When using YPbPr:
- Set Component Colour Space in the Setup/Input Configuration menu to YPbPr

9 Composite 2 (CVBS 2) (input 8
Uses an RCA phono connector to receive composite video.

Notes

Thos For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide.

Side connection panel on 3D projectors

1 Main/DVI (input 9)
Single or Dual Link DVI-D input.
This input has a DVI-I connector, but can only receive digital (DVI-D) signal from a compatible source.
Sources up to:

- 1920x1080 resolution for 1080p models
- 1920×1200 resolution for WUXGA models
$24-160 \mathrm{~Hz}$; up to 12 bits per color. Supports HDCP.
2 Sub/HDMI (input 10)
Single Link DVI-D (HDMI 1.4 compatible) input.
Sources up to:
- 1920×1080 resolution for 1080 p models
- 1920×1200 resolution for WUXGA models
$24-60 \mathrm{~Hz}$; up to 12 bits per color.
3 Twin-Link DVI-D (Dual Pipe)
Connect both sockets.
Input 9 is the Main input, Input 10 (DVI/HDMI) is the Sub input.
Sources up to:
- 1920x1080 resolution for 1080p models
- 1920x1200 resolution for WUXGA models
at frame rates consistent with up to $148.5 \mathrm{Mpx} / \mathrm{sec} /$ pipe (including blanking)

Side Connection Panel

Notes

This There is no scaler on Inputs 9-11
Images up to and including the native resolution of the display will be displayed pixel for pixel and centred.

This enables the projector to maximise the image bandwidth and grayscale resolution.

Thos For more information about the difference between the two connection panels, see Special considerations when using inputs 9-11 further in this section.

I-s For information about 3D video, see 3D connections further in this guide.

Tos For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide.

Special considerations when using inputs 9-11

Differences between inputs 9-11 and inputs 1-8

Inputs 9 and 10 have been designed to offer access to a very high bandwidth digital video path, free of the limitations inherent to standard image processing techniques. As such, the image is pixel-mapped directly to each DMD ${ }^{\text {M }}$, so only a subset of the image settings applies to Inputs 9-11.

Global settings, such as input selection, lens and lamp control, are all applicable to Inputs 9-11 but modal settings are not.
Input and processing architecture

EDID on the DVI and VGA inputs

If you are using a computer DVI card or another source that obeys the EDID protocol, the source will automatically configure itself to suit the projector.
Otherwise please refer to the documentation supplied with the source to manually set the resolution to the DMD ${ }^{\text {TM }}$ resolution of the projector or the nearest suitable setting. Switch off the source, connect to the projector, then switch the source back on again.

Notes

There is no scaler on Inputs 9-11
Images up to and including the native resolution of the display will be displayed pixel for pixel and centred.

This enables the projector to maximise the image bandwidth and grayscale resolution.

I-s Global settings are indicated by a globe icon in the OSD and affect all inputs.
Modal settings only affect the currently displayed input.

Using HDMI/DVI switchers with the projector

When using an HDMI/DVI source switcher with the projector, it is important to set the switcher so that it passes the projector EDID through to the source devices. If this is not done, the projector may not be able to lock to the source or display the source correctly as its video output timings may not be compatible with those of the projector. Sometimes this is called transparent, pass-through or clone mode. Please see your switcher's manual for information on how to set this mode.

Additionally, sources which use HDCP encryption may not display properly when connected to the projector via a switcher. Refer to the switcher's manual for more information.

The EDIDs in the switcher should be the same as the one in the projector.

Notes

Jos Dual link DVI:

high bandwidth/frame rate

3D connections

3D sources up to $\mathbf{6 0 H z}$ requiring frame doubling and left/ right interleaving

1. Connect to any of the inputs on the rear connection panel.

- Set 3D Type in the 3D menu to match the format of the incoming signal. Choose from Sequential, Top-and-Bottom and Side-by-Side (Half).

3D sources above 60 Hz not requiring frame doubling

1. Connect to either of the inputs on the side connection panel.
2. Set 3D Type in the 3D menu to Auto, except when the projector has problems selecting between Sequential, Frame Packing, Top-and-Bottom and Side-by-Side (Half)

Dual Pipe 3D

- Connect to both of the inputs on the side connection panel. Input 9 (Main/DVI) is the left image, and Input 10 (Sub/HDMI) is the right image.

(1) Rear connection panel
(2) Side connection panel

Notes

Th WUXGA (1920×1200) is only available at 50 and 60 Hz on input 3 . For WUXGA 3D, we recommend the use of input 9 .

This For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide.

3D Sync in

- Sync input signal.

Connect the 3D sync from your graphics card or server.

3D Sync out

 settings in the 3D menu.Connect this to your IR emitter or ZScreen.

- Sync output signal. This may be affected by the Sync Offset and Output Sync Polarity

Side Connection Panel

Notes

This For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide.

3D connection examples

3D sources up to 60 Hz , requiring frame doubling and left/right interleaving

3D sources above 60 Hz

Notes

I-s Use inputs 1-8 if the geometry of the image needs to be adjusted.

Control Connections

1 Update port
All of the projector's features can be controlled via a serial connection, using the commands described in the Protocol Guide.
In addition, the Update port is used to download, via LAN, firmware updates issued from time to time by Digital Projection.
Use a crossed LAN cable to connect directly to a computer, or an uncrossed cable to connect to a network hub.

2 Wired remote control input
If infrared signals from the remote control cannot reach the projector due to excessive distance or obstructions such as walls or cabinet doors, you can connect an external IR repeater to the remote control input, and position its IR sensor within range of the operator.

3 Wired remote control output
To synchronise the control of multiple projectors, connect the wired remote output of one projector to the wired remote input of another.

4 RS232
All of the projector's features can be controlled via a serial connection, using the commands described in the Protocol Guide.
Use a null-modem cable to connect directly to a computer, or a straight cable to connect to a modem.

5 LAN
The projector Warp function is controlled through this port.
In addition, this port can be used with the Virtual OSD to control the projector. Use a crossed LAN cable to connect directly to a computer, or an uncrossed cable to connect to a network hub.

6 Service port
The Service port is used to download, via USB, firmware updates issued from time to time by Digital Projection.

Notes

This For a complete listing of pin configurations for all signal and control connectors, see Appendix E: Wiring Details in the Reference Guide
Ins Only one remote connection (RS232 or LAN) should be used at any one time.
This Plugging in the remote control cable will disable the infrared receivers.

Th For a list of all commands used to control the projector via a serial connection or LAN, see the Protocol Guide.

This For details on using the Virtual OSD, see the Protocol Guide.

LAN connection examples

Notes

DIGITAL

Titan Super Quad Series Titan Quad 2000 Series Titan Quad Series
 Titan 930 Series

High Brightness Digital Video Projector

OPERATING GUIDE

IN THIS GUIDE

Using The Menus 40
Menus and sub-menus 40
Drop-down lists41
Sliders 42
Commands. 42
Editing fields 43
Using The Projector 44
Main menu 44
Lens menu 45
Zoom 45
Focus 45
Calibrate Zoom and Calibrate Focus 45
Center Lens 45
Nudge 46
Lens Presets 46
Image menu 47
Video Filters47
VGA Setup 47
Color menu 48
Gamut 48
Black Level and Gain sliders.48
Geometry menu49
Aspect Ratio 49
Overscan. 49
Size \& Position 50
Blanking 50
Geometry Engine 51
Edge Blend menu 57
Overview 57
Array H Position and V Position 58
S-Curve Value. 59
Blending 61
Segmentation 62
Blend Width. 64
Black Level Uplift 64
Reduce Black Level Uplift Width 65
Blending images from multiple projectors 68
Before you start. 68
Edge Blend procedure. 69
PIP menu 77
3D menu 78
3D types. 79
Some 3D settings explained 81
Dark Time. 81
Source Dominance 81
Sync Offset. 81
Frame Rate Multiplier 82
Lamps menu 83
Setup menu. 84
Reset Default Settings 84
Input Configuration 85
Network. 86
On Screen Display 89
System 90
Setting up an IR address 91

IN THIS GUIDE (continued)

Information menu .. 92
Lamps ... 92
Configuration.
. .93

Using The Menus

Use the buttons on the projector control panel or on the remote control, to access the menu system.

- To open or close the on-screen display (OSD), press MENU.

Menus and sub-menus

- To open a sub-menu, select it using the UP and DOWN arrow buttons, then press OK.

- To return to the previous menu, press EXIT

Notes

Thos Some menu items may not be available due to settings in other menus. These will be grayed out on the actual menu.
Z. to a setting, the setting affects all sources and all inputs; otherwise, only the current input source will be affected if you change the setting.

Drop-down lists

To use a drop-down list:

1. Navigate to the drop-down list in the menu and press $\mathbf{O K}$.
2. Highlight an item from the list using the UP and DOWN arrow buttons.
3. Press $\mathbf{O K}$ again to select the highlighted item, or press EXIT to exit without changing.

Notes

Tos Some menu items may not be available due to settings in other menus. These will be grayed out on the actual menu.

This When a globe icon appears next to a setting, the setting affects all sources and all inputs; otherwise, only the current input source will be affected if you change the setting.

Sliders

To use a slider, press the LEFT and RIGHT arrow buttons to adjust it.

Notes

工- Some menu items may not be available due to settings in other menus. These will be grayed out on the actual menu.

Thos When a globe icon appears next to a setting, the setting affects all sources and all inputs; otherwise, only the current input source will be affected if you change the setting.

Commands

To use a command, press $\mathbf{O K}$. In the example below, press $\mathbf{O K}$ to confirm, or press EXIT to cancel.

MENU
Drop-down List 1
Drop-down List 2
:---:
Unavailable List Item
Sub-menu
Unavailable Sub-menu
Slider 1

Editing fields

Some features require a text or numeric field to be edited.

1. To edit a field, first select it using the LEFT and RIGHT arrow buttons, then press OK.
2. Use the LEFT and RIGHT arrow buttons to move the green highlight to the digit or character which is to be changed, then use UP and DOWN to adjust it
3. Use the LEFT and RIGHT arrow buttons to select the next digit or character
4. Press OK to accept the new value, or press EXIT to exit without changing

SUB-MENU	
Field 1	192.168.000. 000
Field 2	192.168.000...n

Using The Projector

Main menu

- Input Selection

Select an input source from the drop-down list.

- Test Pattern

Set Input Selection to Test pattern and then select a test pattern from the drop-down list.

- Lens, Image, Color and Geometry

Open these sub-menus to access various picture and screen settings.

- Edge Blend / PIP

PIP and Edge Blend are mutually exclusive modes of operation. When the projector is in Edge Blend mode (as shown in the picture), PIP is not available, and vice versa.

- 3D

Access 3D settings.

- Lamps

Select lamp configuration and adjust lamp power.

- Setup

Adjust Input Configuration, Network, On Screen Display and System settings.

- Information

View your current configuration.

Notes

PROJECTOR MODEL	
Input Selection	Composite 1
Test Pattern	Grey V Bars
Lens	
Image	
Color	
Geometry	
Edge Blend	
3D	
Lamps	
Setup	
Information	

Thss See also Using The Menus earlier in this guide and Appendix D:

Main Menu

T- You can also select an input source input 11.

Menu Map in the Reference Guide. by pressing the following buttons on the remote control: 1 to $\mathbf{9}$ for inputs 1 to 9, 10+ for input 10 and \# for

I-s Inputs 9, 10 and 11 are not available on 2D models.
].s Test patterns are subject to image controls, so brightness, contrast etc. will affect their appearance on screen.

In Do not use the provided test patterns for ColorMax.

T-s You can upload custom test patterns using a network connection - see Virtual OSD in the Protocol Guide.

了 The 3D menu is not available with 2D projectors.

Lens menu

Zoom

To move the lens in or out:

1. Select Zoom In or Zoom Out, then press $\mathbf{O K}$.
2. When the image is the desired size, select Zoom Stop and then press OK.

Focus

To adjust the focus:

1. Select Focus Near or Focus Far, then press OK
2. When the image is correctly focussed, select Focus Stop and then press OK.

Calibrate Zoom and Calibrate Focus

Each time a new lens is fitted into the projector, a calibration procedure must be carried out using these commands.
Before you use a newly fitted lens, select Calibrate Zoom and Calibrate Focus in turn and wait until the projector establishes minimum and maximum travel distances. Select one command and allow at least 60 seconds for the calibration to take place, then select the other command.

Center Lens

To center the lens, select Center Lens and press OK

LENS
Zoom In
Zoom Stop
Zoom Out
Focus Near
Focus Stop
Focus Far
Calibrate Zoom
Center Lens
Nudge
Presets

Main Menu Lens

了-s You can also move the lens, focus and zoom using the keypad or the remote:

- Press SHIFT followed by an arrow button to shift the lens up, down, left and right.
- Press FOCUS followed by the UP and DOWN arrow buttons to adjust the focus.
- Press ZOOM followed by the UP and DOWN arrow buttons to zoom in and out.
You can also calibrate zoom and focus using the keypad:
- Press RPY followed by the RIGHT arrow button to calibrate the lens zoom mechanism
- Press RPY followed by the LEFT arrow button to calibrate the lens focus mechanism
You can calibrate the lens using the remote. Depending on the remote you are using:
- On 105-023 Rev A, press RPY followed by the arrow buttons RIGHT to calibrate zoom, LEFT to calibrate focus).
- On 105-023 Rev B, press and hold CAL, then press ZOOM or FOCUS.

Nudge
 To position the image correctly on the screen, use the Nudge controls.

Lens Presets

This menu allows you to save up to five custom lens presets, which you can recall later.
To save a preset using the remote, press and hold SAVE, then press the number button for the preset you wish to save.

To recall a preset using the remote:

- On remote 105-023 Rev A, press and hold PRESET, then press a number button $\mathbf{1}$ to $\mathbf{5}$
- On remote 105-023 Rev B, press and hold LOAD, then press a number button $\mathbf{1}$ to $\mathbf{5}$.

	Notes
Main Menu Lens Nudge	

LENS PRESETS	
Save 1	OK
- Save 2	
-Save 3	
- Save 4	
- Save 5	
-secall 1	
- Recall 2	
- Recall 3	
-Secall 4	
- Recall 5	

Main Menu

Lens
Lens Presets

Th To determine which remote control you are using, see Remote Contro! in the Installation and Quick Start Guide.

Image menu

- Brightness, Contrast, Gamma, Hue and Saturation

Set the slider or select from the drop-down list as required, to improve the quality of the image.

- Black Level Offset

Set this to $\mathbf{0}$ IRE or $\mathbf{7 . 5}$ IRE as required.

- Use V Position and H Position to adjust the position manually.

Video Filters

Set the sliders or select from the drop-down list as required, to improve the quality of the image:

- Sharpness - a peaking filter to increase high frequency/luminance information.
- Detail - a filter which removes low frequency image components.
- Luma Sharpness - a filter which enhances luminance sharpness.
- Chroma Sharpness - a filter which enhances the color sharpness of the chrominance signal by increasing the steepness of color edges.
- Recursive NR - a noise reduction filter which reduces spatial \& temporal noise (only applicable to standard definition video signals).
- Mosquito NR - a noise reduction filter which reduces block artifacts (only applicable to standard definition video signals).
- Cross Color Suppression - a filter which reduces luminance to chrominance crosstalk on Composite Video signals. The crosstalk appears as a rainbow pattern in regions of fine detail.

VGA Setup

Use Auto Setup to allow the projector to detect the appropriate settings automatically.
If you require manual adjustment:

- Set the Phase slider to correct for shimmering or poor quality definition on, for example, fine text.
- Set the Total H Samples slider to match the resolution of the incoming video signal.

Main Menu Image

Sos Settings can be accessed from the remote control as well. If your remote is 105-023 Rev A, you can press BRI, CON or SAT. On 105-023 Rev B, press BRI, CON or GAMMA.

Hue applies only to NTSC signals.
I-s When a new input mode is detected (e.g. NTSC, HDTV 1080p, SVGA etc.), all the input settings are saved so that they can be recalled next time that input mode is displayed.

Main Menu
Image Video Filters

Main Menu

Image VGA Setup

I-s VGA Setup is not available unless a VGA signal is present.

Color menu

Gamut

Peak gives you the brightest possible image.
Choose HDTV for high definition standards and SDTV for standard definition standards.
A value between 3200K and 9000K selects the relevant color temperature.
You can upload your own gamut using the Projector Controller software, and then select it from the User 1 and User 2 settings.

Black Level and Gain sliders

Set the sliders as required.

COLOR		
Gamut	0	
Red Black Level		
Green Black Level	0	
Blue Black Level	0	
Red Gain	0	
Green Gain	0	
Blue Gain	0	

Notes

Main Menu
Color

B- The Projector Controller software is available for download from the Digital Projection website, free of charge.

Geometry menu

Aspect Ratio

Choose between Source, Fill Display, Fill \& Crop, Anamorphic and TheaterScope.
Some devices (e.g. certain DVD players) pack a 16:9 image into a 4:3 aspect ratio. In such cases to display the image correctly, choose the Anamorphic aspect ratio.

In For examples of how the different aspect ratios affect screen dimensions, see Aspect Ratios Explained in the Reference Guide.

Thos Items on this page may be unavailable depending on the Geometry Engine setting.

Size \& Position

- Set Enable to On or Off.
- Use Setting to choose:

Global, in which case these settings will be applied to all signals on all inputs.
or Per Mode, in which case these settings will be applied only to the current input signal.

- Set the H Position and V Position sliders as required.
- Set H Size and V Size. When Aspect Lock is set to On, the V Size slider is disabled.
- Select Reset and press OK to reset all the sliders.

Blanking

Blanking curtains can be applied to each edge of the projected image.

- Set Enable to On or Off.
- Set the sliders as required.

Notes
Main Menu Geometry Size \& Position
Main Menu Blanking

Geometry Engine

Choose from Keystone, Cornerstone, Rotation, Warp or Off

- If Geometry Engine is set to Keystone, set the H Keystone and V Keystone sliders to correct for any distortion caused by the projector being in a different horizontal or vertical plane to the screen.

(1) The projector is positioned at an angle

2 The resulting image is distorted
(3) The image is corrected when Keystone is applied

1
2

Notes

Main Menu
Geometry

ITs Some items on this menu may be unavailable depending on the Geometry Engine setting.

I-s If possible, position the projector facing the screen at a right angle to avoid geometry corrections.

Main Menu Geometry

Geometry Engine (continued)

Keystone settings

(1) Projector to the left The projector is positioned to the left of the screen
To correct, apply a positive
H Keystone value using
the RIGHT arrow button.
2 Projector to the right The projector is positioned to the right of the screen. To correct, apply a negative H Keystone value using the LEFT arrow button

3 Projector high
The projector is positioned above the screen at a downward angle
To correct, apply a negative v Keystone value using the LEFT arrow button.

4 Projector low
The projector is positioned below the screen at an upward angle. To correct, apply a positive v Keystone value using the RIGHT arrow button.

5 Projector straight
The projector is directly opposite the screen at a right angle both horizontally and vertically. No correction is needed.

Horizontal and vertical keystone corrections

Notes

Main Menu

Geometry

Th If possible, position the projector facing the screen at a right angle to avoid geometry corrections.

Geometry Engine (continued)

- Pincushion / Barrel is enabled if Geometry Engine is set to Keystone or Rotation. Set the slider to correct for any distortion caused by the screen being concave or convex.

GEOMETRY		
Aspect Ratio		Source
Overscan	0	
Size \& Position		-
Blanking		-
\%Geometry Engine		Rotation
OH Keystone	0	
- V Keystone	0	
-sPincushion / Barrel	0	
\rightarrow Rotation	0	
O Warp Map		Off
Cornerstone		

Pincushion

Barrel

Notes
 Main Menu
 Geometry
 ITs Some items on this menu may be unavailable depending on the Geometry Engine setting.
 I-s If possible, position the projector facing the screen at a right angle to avoid geometry corrections.

Geometry Engine (continued)

- If Geometry Engine is set to Rotation, set the Rotation slider to rotate the image on the screen

GEOMETRY		
Aspect Ratio		Source
Overscan	0	
Size \& Position		-
Blanking		-
- Geometry Engine		Rotation
OH Keystone	0	
OV Keystone	0	
-s) Pincushion / Barrel	0	
- Rotation $^{\text {a }}$	0	
OWarp Map		Off
Cornerstone		-

Main Menu Geometry

马-s Some items on this menu may be unavailable depending on the Geometry Engine setting.

I-s If possible, position the projector facing the screen at a right angle to avoid geometry corrections.

1 DMD position
The DMD is not rotated.
2 Area outside DMD
The corners of the rotated image leave the DMD and appear cropped.

3 Angle of rotation
The angle equals the Rotation setting In this example the angle is 25°, therefore Rotation $=25$.

Geometry Engine (continued)

Warp Map

Using DP Warp Generator, an external Digital Projection computer application, up to eight customised warp maps can be created and uploaded to the projector. If Geometry Engine is set to Warp, and any warp maps have been uploaded, you can select from the drop-down list.

Main Menu Geometry

马-s Some items on this menu may be unavailable depending on the Geometry Engine setting.

I- If possible, position the projector facing the screen at a right angle to avoid geometry corrections.

Geometry Engine (continued)

Cornerstone

If Cornerstone is selected from the main Geometry page, you can use the sliders to stretch the image from each of the four corners.

CORNERSTONE		
SUpper Left X	0	0
- Unper Left Y	0	
-3 Upper Right X	0	
- Upper Right Y	0	
\rightarrow Lower Left X	0	
- Lower Left Y	0	
-s Lower Right X	0	
-hawer Right Y	0	

Main Menu Geometry Cornerstone

Upper Right X and Upper Right Y correction

Edge Blend menu

The Edge Blend menu is available only when Setup > System > Configuration is set to Edge Blend.

Overview

When several projectors are used to create a large tiled image, the edges need to be blended to avoid the overlaps appearing brighter than the rest of the image.

As it is not possible for any projector to produce an absolute black, any 'black' areas in the overlapped edges may appear slightly less dark than those in the rest of the image. Black Level Uplift can be used to counteract this effect, by raising the black level of the rest of the image. The amount of uplift required will be either $x 2$ or $x 4$, depending on how many images are overlapped, as shown in the examples on this page.

Image brightness changes from one point to another, within the same blended region. If the same level of black level uplift is applied throughout the blended region, the overlapping edges may still be visible on the screen. Therefore, brightness in these areas is decreased gradually, using an s-curve factor. s-Curve Value is used to control the steepness of the decrease.

x2 uplift area no uplift
Two projectors sharing one overlapping edge

3
x4 uplift area
x2 uplift area no uplift

Four projectors with overlapping edges

Notes

Main Menu

Edge Blend

This This menu is available only when Setup >System > Configuration is set to Edge Blend.

None of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.

Tos For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Array Width and Height

- Set this to the total number of projectors in the array. None of the other options are available until one of these two settings is greater than 1. The maximum number of projectors is 4×4.

Array H Position and V Position

- These two parameters need to be set correctly for each projector in the array, so that it can determine which edges are to be blended. Sometimes only one edge overlaps, sometimes two, three or four.

EDGE BLEND		
Array Width	1 -	
- Array Height	1	
- Array H Position	0	
- Array V Position	0	
-S-Curve Value	16	
¢ Blending		Off
-Segmentation		Off
Blend Width		-
Black Level Uplift		-
Reduce Black Leve	Uplift Width	-

Notes	
Main M Edge	Menu Blend
$3,0$	This menu is available only when Setup > System > Configuration is set to Edge Blend.
$3, \infty$	None of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.
$3, \infty$	The position numbering starts from zero, so the top left projector is at position H O, V 0 .
	Which settings are available in these menus depends on: - the number of projectors in the array - the position of the projector in the array
$3,-\infty$	An image like the one shown here can be produced by an array of 16 projectors only if Segmentation is set to $\mathbf{O N}$, or if an external tool is used to split the image into segments. See Segmentation further in this section.
3-0	For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Example array of sixteen projectors

(1)

Example

The illustration shows an array of sixteen projectors. Array Width and Array Height of all projectors have been set up as follows:

- Array Width $=4$
- Array Height $=4$

Array H Position and Array V Position of each projector have been set up to reflect its vertical and horizontal position in the array.

The settings for the third projector in the second row
 are:

- Array H Position = 2
- Array V Position = 1
nenu width or the Array Height setting is greater than 1.

The position numbering starts from ero, so the top left projector is at position H0,VO.

Which settings are available in these depends on: array
the position of the projector in he array can be produced by an array of 16 and on if Segmentation is set to ON, or 1 an external tool segments. See Segmentation further in this section.
or a detailed step-by-step description of the edge blend from multiple projectors further in this section.

S-Curve Value

- In the regions where two or more projectors overlap, the brightness of the signal is decreased to blend the images. S-Curve Value controls the steepness of this decrease.

1 S-Curve

Notes

Main Menu

Edge Blend

This menu is available only when Setup >System > Configuration is set to Edge Blend.

Shos None of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.

Tos For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

S-Curve Value (continued)

When images overlap, the area of overlap receives light from all overlapping sources. Without S-Curve, the overlapping edges would be brighter than the rest of the image, as shown in Fig. 1.

Fig. 1: Overlapping edges without S-Curve
If two reciprocal s-curves are used to control the amount of light from each source in the overlapping region, the total amount of light in the region would remain constant, as shown in Fig. 2.

Fig. 2: Applying S-Curve to overlapping edges

Notes

Main Menu

Edge Blend

工hos This menu is available only when Setup > System > Configuration is set to Edge Blend.

In None of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.

马ow For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Blending

This setting enables s-curve blending, or displays an align pattern to help define overlaps between segments.

Set Blending to:

(1) Off

Edge Blend is not used.
2 On
S-curves are enabled in the overlapping regions.
(3) Align Pattern

The align pattern makes the overlaps more visible and helps adjust the physical position of the projectors in the array.
The size of the align pattern is controlled by the Blend Width group of settings.

	Notes
Main Menu Edge Blend	

Main Menu
Edge Blend
This menu is available only when Setup > System > Configuration is set to Edge Blend.

Tho of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.

For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Segmentation

Segmentation can be used if the same image is fed into each projector.

- If Segmentation is Off, every projector in the array will display the whole image.
- If this setting is On, each projector will display its own segment only.

Set to Off if you have external software that handles segmentation.

Segmentation off

Segmentation on

EDGE BLEND
\Rightarrow Array Width
\Rightarrow Array Height
\Rightarrow Array H Position
\Rightarrow S-Curve Value
\Rightarrow Slending
Segmentation
Blend Width
Black Level Uplift
Reduce Black Level Uplift Width

I- None of the other items in this menu are available until either the Array Width or the Array Height setting is greater than 1.

For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Segmentation (continued)

An example array:

Image source
DVD player, Blu-ray, computer, etc.

Distribution Amplifier

Sends the source image to all projectors in the array.
3 Array (Segmentation is on)
Each projector displays a segment.

Blend Width

Use this to set the width of the blended regions.

1	Top Blend Region
2	Bottom Blend Region
3	Left Blend Region
4	Right Blend Region

Notes
To apply the settings in these
menus, use the Apply command at
the bottom of each page.

Main Menu
Edge Blend Blend Width

Black Level Uplift

Overlapping edges may appear lighter than the rest of the image. Counteract this effect by raising black levels in the rest of the image. The amount of uplift required will be either $x 2$ or $x 4$, depending on how many images are overlapped.
The following example shows a segment with overlapping edges on all sides.
5 Unblended Region
This region is not overlapped. Black level should be raised by the maximum overlap occurring within the segment, therefore
Black Level Uplift should be $x 4$.

Main Menu

Edge Blend Black Level Uplift

I-s For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Reduce Black Level Uplift Width

Use this to correct for stray light from the pond of mirrors, the DMD's inactive outermost mirrors.
example below, the blended image comes from two projectors, 1 and 2 . Both images have black level uplift applied in their unblended regions; as a result, artifacts 3 and 4 have emerged at the edges where the black level uplift region of one projector overlaps the pond of mirrors of the other.
To remove the artifcats, you need to slightly reduce the size of the black level uplift region of each projector so it does not overlap the pond of mirrors of the other projector.

REDUCE BLACK LEVEL UPLIFT WIDTH		
SUpper Left X	0	0
- Upper Left Y	0	
-3.apper Right X	0	
-5Upper Right Y	0	
Gsower Left X	0	
\% Lower Left Y	0	
-s Lower Right X	0	
-3 Lower Right Y	0	
कApply Uplift		

Notes
Main Menu Edge Blend Reduce Black Level Uplift Width
To apply the settings in this menu,
use the Apply Uplift command at
the bottom of the page.

the bottom of the page.

I-s For additional information, see The DMD ${ }^{\text {™ }}$ in the Reference Guide.

I- For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Reduce Black Level Uplift Width (continued)

Notes

A detailed view of one of the projectors in a two-projector array:
(1) Black level uplift region

This image occupies the left half of a two-projector array. Black level uplift has created artifacts on the edges of the blend region.
2 Artifact (left)
This artifact is caused by the other projector's pond of mirrors overlapping the black level uplift region of this projector. It can be eliminated if the black level uplift width of this projector is reduced.

3 Blend region
The area in the middle of the array, where the two images overlap. Black level uplift has not been applied here.

4 Artifact (right)
This artifact is caused by this projector's pond of mirrors overlapping the black level uplift region of the other projector. It can be eliminated if the black leve uplift width of the other projector is reduced.

Main Menu

Edge Blend
Reduce Black Level Uplift Width
This For additional information, see The DMD ${ }^{\text {TM }}$ in the Reference Guide.

Tos For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Reduce Black Level Uplift Width (continued)

In the Reduce Black Level Uplift Width menu, settings correspond to coordinates within the unblended regions. Only relevant coordinates are enabled.

To remove the artifact on the left:

1. Open the Reduce Black Level Uplift Width menu of the projector on the left
2. Adjust Upper Right \mathbf{X} and Lower Right X.
3. Select Apply Uplift. The black level uplift region of this projector will withdraw from the pond of mirrors of the other projector and the artifact will disappear.

To remove the artifact on the right,

- Open the Reduce Black Level Uplift Width menu of the projector on the right and adjust Upper Left \mathbf{X} and Lower Left X, then select Apply Uplift.

Notes

Main Menu

Edge Blend
Reduce Black Level Uplift Width

T- To apply the settings in this menu, use the Apply Uplift command at the bottom of the page.

I-> For additional information, see The DMD ${ }^{\text {M }}$ in the Reference Guide.
I. For a detailed step-by-step description of the edge blend process, see Blending images from multiple projectors further in this section.

Blending images from multiple projectors

The following procedure explains how to set up an array of projectors and how to blend the images together.

Before you start

Position the projectors

Ensure that all projectors are in good working order
Position the projectors so that they are within the required throw distance range. Position the screen where it will remain during operation. In the initial stages of the procedure you will be using test patterns, therefore it is not necessary to connect the input at this stage. However, you need to make sure that you are able to connect the inputs without moving the projectors.

Control the projectors

You can control the projectors individually by using:

- their respective control panels, or
- a dedicated remote control for each projector, or
- a single remote control for all projectors. To do so, you need to assign a different IR address for each projector.

Consider connecting the projectors in a network and using the Projector Controller application to monitor the projectors and change settings on the whole array at once.

In For information about changing the IR address of a projector, see Setting up an IR address further in this guide.

Tos The Projector Controller software is available for download from the Digital Projection website, free of charge.

For information about setting up a network, see Network further in this guide.

Edge Blend procedure

1. Align the projectors as they will be used in the array.

Each projector should be perpendicular to the screen, or as close as possible. Ideally, each projector should allow for a minimum of 20\% screen overlap where it is adjoined by other projectors. Overlaps should be the same in size across the array.

How to align the projectors:

- Ideally, all alignment should be achieved by physically moving the projectors and by using the Lens Shift and Zoom functions.
- If necessary, use Image > V Position and \mathbf{H} Position.
- Do not use geometry corrections.

Example: 1080p projector overlapped on all sides

1 Overlap to the left
This overlap takes 20% of the image width, or 384 pixels.

2 Overlap to the top
This overlap takes 20% of the image height, or 216 pixels.

3 Area without overlaps
This area is also called unblended region.

A 1080p projector with 20% overlaps on all sides

Edge Blend procedure (continued)

2. Ensure that all projectors are color-matched.

If necessary, use the White Field test pattern and test the light output of each projector.
Ensure the Color > Gamut setting has the same value across the array.
Use Lamps > Lamp Power to compensate for different lamps. Even identical lamps change their light output with age and use.

(1) Projector 1: incorrect settings Before the color-match this image has incorrect color gamut and lamp power settings
(2) Projector 2: correct settings

After color-match

3. Enter the correct gamma setting.

Adjust the gamma setting using the Image > Gamma control. For video sources, such as Blu-ray or DVD, use a value of 2.2; for computer graphics use 2.4
The images may still look slightly different at this stage. It is OK to continue.

Edge Blend procedure (continued)

4. Set up the array.

For each projector, open the Edge Blend menu and enter Array Width, Array Height, Array H Position and Array V Position.
Array Width and Array Height should be identical for all projectors. These settings define the size of the array. For example, a two-bytwo array will have the following values

- Array Width = 2
- Array Height = 2

The top left projector will have Array H Position = $\mathbf{0}$ and $\mathbf{A r r a y} \mathbf{V}$ Position = $\mathbf{0}$.
1 Top left
Array H Position = 0 Array V Position $=0$

2 Top right

Array H Position = 1
Array V Position = 0

3 Bottom left
Array H Position = 0
Array V Position = 1
(4) Bottom right

Array H Position = 1 Array V Position = 1

5. Define blend regions.

From the Edge Blend menu on all projectors, set Blending to Align Pattern.

Set up Blend Width on each projector so that the align patterns overlap perfectly and completely cover the blend regions (Fig. 2).
If necessary, physically move the projectors and/or use Lens Shift and Zoom again to align the array perfectly

Fig. 1 Align patterns make it easy to see where the overlap is not perfect Fig. 2
(1) Left projector
(2) Align pattern of left projector

The red arrow next to the align pattern shows what correction needs to be made for the align pattern to cover the whole blend region.
3 Blend region
The brighter ribbon in the middle is overlap area not covered by the align patterns.
4 Align pattern of right projector The red arrow next to the align pattern shows what correction needs to be made for the align pattern to cover the whole blend region.
(5) Right projector

Fig. 2 Projectors with align patterns not covering the blend region
6. Uplift black levels (optional).

If you do not need to uplift the black levels, skip to step 8, Blend the images.

Switch all projectors to the Black Field test pattern.
The level of black will differ across the image as shown in Fig. 1. Uplift the black levels using Edge

Blend > Black Level Uplift.

How to uplift black levels

Regions may be overlapped by two or four projectors. An array will always contain regions overlapped by at least two projectors.

- x2 overlaps

If your array only contains two-projector overlaps, you need to uplift the black levels in the unblended regions - the exact value will depend on the projector, environment, etc. Do not uplift black levels in the overlapping region(s).

- \quad x2 and $\mathbf{x 4}$ overlaps

Sometimes a region is overlapped by four projectors. For example, in a two-by-two segment setup, Array Width = 2 and
Array Height =2, the region in the middle is overlapped by all four projectors (as shown in Fig. 1). If your array contains such regions, you need to uplift black levels roughly four times in the unblended regions, and roughly double in the regions overlapped by two projectors.

Fig. 1 Different black levels
(1) Unblended region

This region is not overlapped. Black level should be raised by the maximum overlap occurring within the image, therefore the value of Black Level Uplift should be the highest here.

x2 overlap

This section of the image is overlapped by two projectors, therefore the correct amount of Black Level Uplift should be roughly half the value of uplift within the unblended region.
(3) x 4 overlap

This part of the image is overlapped by four projectors, therefore Black Level Uplift should not be applied.
\qquad
7. Adjust uplift edges (optional).

This step is necessary if you have uplifted the black levels in the previous step.

During the black level uplift process, brighter lines appear on the edges of the uplifted regions This is due to the inactive area around the periphery of the DMD, also known as pond of mirrors

To remove these edges, use the Edge Blend > Reduce Black Level Uplift Width settings for each projector individually. Enter X and Y corrections for each part

The edges of the uplift area are brighter due to light from the pond of mirrors of the image to achieve this.

Edge Blend procedure (continued)

8. Blend the images

Set Edge Blend > Blending to On for each projector to activate s-curves in the blend regions.
Once blending is activated, use test patterns to detect irregularities within the blend and to correct them.

What test patterns to use

- Use White Field (recommended) and/or Grey H Bars, if you are blending horizontally aligned images, and Grey V Bars, if the images are vertically aligned
What irregularities to look for
- There might be a hard line visible where one of the edges is overlapped by the other image.

How to correct

1. Switch Lamps $>$ Compensation to Manual.
2. Alter the compensation value from the slider until the line disappears.
Once you have removed the line, check if the blend region is darker than the rest of the image 2 . If this is the case adjust the Edge Blend > S-Curve Value setting until the blend region is the same as the rest of the image.

Edge Blend procedure (continued)

9. Set up segmentation (optional).

If you are feeding the same source into all the projectors and aim to have each projector reproduce a segment of the source, you can use the Edge Blend > Segmentation function, or you can use an external processor to control the segments.
To use the Segmentation function:

1. On each projector, set Edge Blend > Segmentation to On.
2. Test with the source. If necessary, enter further corrections as described in steps 6,7 and 8 above.

Bear in mind that using the Segmentation function brings a loss of resolution, as shown below:

1 Whole image
This is a 1080p image and contains 2,073,600 pixels.
(2) Top left segment in a 2×2 array

This segment contains 518,400 pixels, a quarter of the original image.
3 The segment projected with a 1080 p DMD
The segment zoomed in to fill a 1080p DMD. The pixels are larger but not greater in number.

PIP menu

Two images can be combined in three different ways using this feature. The PIP menu is available only when Setup > System > Configuration is set to PIP.

Option

- \quad Select PIP, PAP, or POP mode from the drop-down list.

Input

- Select an Input for the sub-image from the drop-down list. The inputs are divided into two groups - the main image must be from one group, and the sub-image must be from the other group.
- Group A: COMPOSITE 1, COMPOSITE 2, S-VIDEO and 3G-SD
- Group B: COMPONENT, VGA, DVI, HDMI and DVI-A

The inputs from the same group as the main input signal will appear disabled in the list.
Size

- Select a size for the sub-image from the drop-down list.

Position

- Select one of the preset positions for the sub-image from the drop-down list.

Custom Position

- If you have chosen Custom from the Position drop-down list, then you can use the sliders to position the image manually.

PIP: Picture In Picture

PAP: Picture And Picture

POP: Picture Opposite Picture

3D menu

- Set 3D Enable to On or Off as required.

- Use the Frame Rate Multiplier to reduce flicker when the incoming 3D video signal has a low frame rate.

For example, a 48 Hz frame rate could be tripled to 144 Hz .

- 3D Type should be set to Auto, except when the projector has problems selecting between Sequential, Frame Packing, Top and Bottom and Side by Side (Half)
- Set the Dark Time to reduce the ghosting that can be caused by the images overlapping whilst the glasses are switching.
- Set the Sync Offset to compensate for signal processing delays in the projector.
- Set the Output Sync Polarity to suit the glasses, or if the left and right images appear to be swapped.
- Set Source Dominance to Left or Right to suit the incoming 3D video signal.

Sequential

Frame Packing

Top-and-Bottom

Side-by-Side (Half)

3D	
3D Enable	Off
Frame Rate Multiplier	Auto
3D Type	Minimum
- Dark Time	
Sync Offset	$000 \mu \mathrm{~S}$
Source Dominance	

Set Dark Time to the value appropriate to the glasses or ZScreen.
]-s Adjust Sync Offset to eliminate ghosting and achieve a smooth grayscale.

I-s For additional information on $3 D$ settings, see Some 3D settings explained further in this section.

The information on this page does not apply to 2D projectors.

3D types

In most situations you can use the Auto setting to have the projector automatically detect the format. Otherwise, consider the notes below to help you set up the 3D input manually.
The following 3D formats are supported:

- Sequential

Main will accept frame rates up to 160 Hz . Lower frame rates can be multiplied for display. An example would be 60 Hz (30 frames per eye in Left-Right sequence (L1, R1, L2, R2...) with Frame Rate Multiplier set to $2 x$, resulting in a displayed sequence at 120 Hz (L1, R1, L1, R1, L2, R2, L2, R2...). Sub can accept frame rates up to 60 Hz and frame-multiply in a similar manner.
Frame Rate Multiplier should never be set to result in a displayed frame rate above 160 Hz - doing so will result in an image error. For sequential 3D, an external sync is required to identify left and right frames. If no sync is available from the sequential source, the projector will generate an output sync, but it may then be necessary to manually reset the dominance each time the player is started.

Sequential

- Dual Pipe (LEFT and RIGHT)

The left and right eye images are delivered on two separate DVI links, which the projector will interleave for 3D display.

Dual Pipe

Notes

The information on this page does not apply to $2 D$ projectors.

3D types (continued)

- Frame Packing

This format will be detected, re-synchronised, frame-multiplied and displayed at 144 Hz with the left eye / right eye dominance automatically extracted from the video data. You need to optimize Dark Time and Sync Offset manually to suit your chosen switching glasses. You also need to set an appropriate frame rate multiplication: for Frame Packing, we recommend 3x.)

- Top-and-Bottom

Sets the projector to reformat the video frames and map them to the display with the left eye / right eye dominance automatically extracted from the video data. You need to optimize Dark Time and Sync Offset manually to suit your chosen switching glasses. You also need to set an appropriate frame multiplication: for a 60 Hz Top-and-Bottom source Frame Rate Multiplier should be set to 1x because the two halves of the image will automatically be extracted to create a displayed rate of twice the input rate.

- Side-by-Side (Half): interlaced and progressive, 50 and 60 Hz

The side-by-side image will be de-interlaced (if appropriate), resized and then sequentially displayed at 100 or 120 Hz . The left eye / right eye dominance will be automatically extracted from the video data, however you will need to optimize Dark Time and Sync Offset manually to suit your chosen switching glasses.
When 3D is disabled, 1080i will be treated conventionally. For a 60 Hz Top-and-Bottom source Frame Rate Multiplier should be set to $\mathbf{1 x}$ because the two halves of the image will automatically be extracted to create a displayed rate of twice the input rate.

Frame Packing

Top-and-Bottom

Side-by-Side (Half)

Notes

300
The information on this page does not apply to $2 D$ projectors.

Dark Time and Sync Offset need to be set only once, to optimize the image for the glasses in use.

Some 3D settings explained

Dark Time

Ghosting can be caused by the left and right images overlapping during the time that the ZScreen or 3D glasses are switching. Dark Time allows you to minimize this effect.

Source Dominance

The outgoing 3D frames are in pairs - the dominant frame being presented first. You can determine which frame should be the dominant one

By convention the default setting is Left.

Sync Offset

The sync signal from the 3D server will be in phase with the frames generated by its graphics card. However to compensate for processing delays in the projector, Sync Offset introduces a delay to the sync output signal sent to the ZScreen or 3D glasses.

Dominance Left

| LEFT 1 RIGHT 1 LEFT 2 RIGHT 2 LEFT 3 RIGHT 3 |
| :--- | :--- | :--- | :--- |

Dominance Right

| RIGHT 1 LEFT 1 RIGHT 2 LEFT 2 RIGHT 3 LEFT 3 |
| :--- | :--- | :--- | :--- |

Notes

The information on this page does not apply to 2D projectors.In order to achieve maximum light output and a smooth grayscale, whilst eliminating ghosting, the following procedure is recommended:

1. Set Dark Time to a value appropriate to the glasses or ZScreen, say 650μ S or 1300μ S.
2. Adjust Sync Offset time to eliminate ghosting and achieve a smooth grayscale.
3. Repeat steps 1 and 2 until the best result is obtained.

Some 3D settings explained (continued)

Frame Rate Multiplier

If the 3D video is available only at low frame rates, it will be necessary to multiply the frame rate to obtain a flicker-free image. For example, a 60 Hz frame rate can be doubled to 120 Hz , or a 48 Hz frame rate could be tripled to 144 Hz .

Lamps menu

This menu differs from model to model. The illustration shows the Lamps menu for Titan Super Quad Series and Titan Quad 2000 Series.

- Operation

Titan 930 Series, Titan 800 Series
Set Operation to choose between Lamp 1 + Lamp 2, Lamp 1, Lamp 2 and Auto 1. In the Auto 1 mode, the lamp usage will be spread evenly over the two lamps, over time.

Titan Super Quad Series, Titan Quad 2000 Series and Titan Quad Series

Set Operation to choose between All Lamps, Auto 3, Auto 2 and Auto 1. In the Auto modes, the lamp usage will be spread evenly over the four lamps, over time.

- Power

Titan Quad Series, Titan 800 Series
Set the slider to vary the power between 80% and 100%.
Titan Super Quad Series, Titan 2000 Series, Titan 930 Series Set the slider to vary the power between 86% and 100%.

- Compensation

All models

In most cases the Compensation control should be left set to Auto. If you find that colored gradients are not displayed correctly, set the Compensation control to Manual and adjust the slider until the gradient is smooth.

- Conditioning

Titan Super Quad Series, Titan 2000 Series and Titan 930 Series
In most cases the Conditioning control should be left set to $\mathbf{O n}$ which will lengthen the life of the lamps. However, if you wish to avoid very slight lamp intensity changes during operation, the control should be set to Off.

Titan Quad Series, Titan 800 Series

This control is not available on these models.

If you have rented the projector from a dealer, the projector may have been shipped with some of its lamps deactivated to lower the rental cost. You can reactivate these lamps (at extra cost) using the Feature Control setting in the Setup > System menu.

Main Menu

LampsRunning the lamps at a lower power will increase their expected lifetime.

To learn more about Feature Control, see System further in this guide.

Setup menu

- Orientation

Depending on how the projector is mounted, select the appropriate setting from the drop-down list.

- Latency

Affects interlaced sources only. For fastest response, the Lowest setting gives minimum frame delay. For improved performance with films involving motion sequences, the Best Video setting uses adaptive de-interlacing and interpolation, but takes longer to process.

SETUP	
Orientation	Desktop Front
Latency	Lowest
Input Configuration	
Network	
On Screen Display	
System	

	Notes
Main Menu	

Setup

Reset Default Settings

SETUP		SETUP
- Orientation	Desktop Front	- Orientation Desktop Front
-3Latency	Lowest	-3Latency Lowest
Input Configuration	-	
Network	-	
On Screen Display	-	WARNING All custom settings will be lost!
System	-	Press OK to confirm
Reset Default Settings	OK	Press Exit to cancel

Resetting to Factory Defaults... Wait 1 minute then power cycle projector.

When you press OK to restore the factory default settings, a warning message appears, asking you to confirm or cancel. Once the process has begun, wait one minute and then power cycle the projector so the restored settings can take effect.

Input Configuration

This menu allows adjustment of various technical parameters specific to each of the signal inputs.

- DVI Boost EQ should normally be set to Off, except when you are having problems with a long DVI cable.
- DVI / HDMI Color Space should normally be set to Auto, except when the projector has problems identifying the correct colour space.
- DVI / HDMI Range should normally be set to Auto, except when you are having contrast problems with some DVI sources.
- Set DVI-I Port to choose between the Analog and Digital signals from a DVII source.
- Main / DVI Operation

Select between single and dual link DVI reception.

- Main / DVI Range

Select between Full and Limited range.

- Set Component Colour Space to choose between RGB and YPbPr.
- Component Sync Type should be set to Auto, except when the projector has problems selecting between $\mathbf{3}$ Wire (RGsB) and 4 Wire (RGBS).
- If two video streams are being transmitted, use 3G-SDI Level B Stream to choose between the two streams.

INPUT CONFIGURATION	
SVI Boost EQ	Off
¢DVI / HDMI Color Space	RGB
¢DVI / HDMI Range	Full
\rightarrow DVI-I Port	Digital
-Main / DVI Operation	Single Link A
- Main / DVI Range	Full
-Component Color Space	RGB
- Component Sync Type	3 Wire
-3G-SDI Level B Stream	Stream 1

INPUT CONFIGURATION	
कDVI Boost EQ	Off
$=$ DVI / HDMI Color Space	RGB
$=$ DVI / HDMI Range	Full
$=$ DVI-I Port	Digital
$=$ Component Color Space	RGB
$=$ Component Sync Type	3 Wire

Notes

Main Menu

Setup
Input Configuration

This Main / DVI Operation and

 Main / DVI Range are only available on 3D projectors..
Network

This menu allows setup of two networks:

- Control

This network can be used - for example with Projector Controller - to control every feature of the projector except image warping.

- LAN

This network is reserved for warping.
To use the warping functionality of Projector Controller, you must connect both networks: LAN for warping and Control for everything else.

Make sure the two networks are assigned unique, non-identical IP addresses.

NETWORK		
Control	\bullet	
LAN		

Notes
Main Menu Setup Network
马osisThe Projector Controller software is available for download from the Digital Projection website, free of charge.

Control
 - Set DHCP to $\mathbf{O n}$ if the IP Address is to be assigned by a DHCP server, or Off if it is to be set here.

- If DHCP is set to On, it will not be possible to edit either IP Address or Subnet.
- If DHCP is set to Off:

1. Edit IP Address and Subnet as required

Make sure the IP address you enter here is different from the IP address assigned to the LAN network.
2. Power cycle the projector in order for the new settings to take effect.

The MAC Address of the projector is shown at the bottom of the screen.

CONTROL	
ODHCP	Off
IP Address	192.168 .000 .000
Subnet	255.255 .255 .000
New settings effective after power cycle	
MAC Address	$9 C-5 E-73-00-26-87$

Notes
 Main Menu
 Setup
 Network Control
 Ins DHCP should be set to Off when using the projector with Projector Controller.
 Ins The Projector Controller software is available for download from the Digital Projection website, free of charge.

Ih The IP address of the Control network must be different from the IP address assigned to the LAN network.
了一s If the first digit of an address octet is set to " 2 ", then it will not be possible to enter values above 5 for the second or third digits. To overcome this, set the first digit to either " 0 " or " 1 ". You can set the first digit back to " 2 " later if necessary.Any new settings will not be effective until the projector has been power cycled.

- Set DHCP to On if the IP Address is to be assigned by a DHCP server, or Off if it is to be set here.
- If DHCP is set to On, it will not be possible to edit either IP Address or Subnet.
- If DHCP is set to Off:

1. Edit IP Address and Subnet as required

Make sure the IP address you enter here is different from the IP address assigned to the Control network.
2. Select Apply Settings and press OK.

The fields at the bottom of the menu show the current settings.

LAN	
DHCP	Off
\Rightarrow IP Address	192.168 .000 .100
$=$ Subnet	255.255 .255 .000
Apply Settings	
DHCP Status	Off
IP Address	192.168 .000 .100
Subnet	255.255 .255 .000
MAC Address	$9 C-5 E-73-00-26-87$

Notes
Main Menu Setup Network LAN
DHCP should be set to Off when using the projector with Projector Controller. The Projector Controller software is available for download from the Digital Projection website, free of charge.

了-s The IP address of the LAN network must be different from the IP address assigned to the Control network.
I- If the first digit of an address octet is set to "2", then it will not be possible to enter values above 5 for the second or third digits. To overcome this, set the first digit to either "0" or "1". You can set the first digit back to "2" later if necessary.

On Screen Display

- Select a display Language from the drop-down list.
- The menus will disappear if no buttons are pressed within the Timeout selected from the drop down list. If you want the menus to stay on screen permanently, then select Infinite.
- Select a Position from the drop-down list.
- If you do not want projector status messages to be displayed, for instance DVI-A
Searching then set Messaging to Off.

System

- Configuration: switch between PIP and Edge Blend

- Use IR Address to set an address for the remote control.

The other settings in this menu are provided mainly to allow control from the Virtual OSD.

- Feature Control

If you have rented the projector from a dealer, the projector may have been shipped with some of its lamps deactivated to lower the rental cost. If more brightness is needed, these lamps can be activated (at extra cost) by obtaining an unlock PIN code from your dealer.

Once you have entered the PIN code using this control, you will need to reboot the projector to enable the extra lamps

- Use the Shutter Open and Shutter Close commands as required.
- Use the Power Off command to set the projector into Standby mode.
- Use the Color Enable sub-menu to switch individual colors on and off.

SYSTEM	
Sonfiguration	Edge Blend
- n IR Address - 5 Feature Control \rightarrow Shutter Open - Shutter Close - Power On - Power Off Color Enable	

COLOR ENABLE	
Red Off	
Red On	
Green Off	
Green On	
Blue Off	

	Notes
Main Menu	
Setup	
System	

了. When you switch between PIP and Edge Blend, the projector will reboot instantly to enable the new setting

了os The Power On command has no function when seen on the projector OSD.

However, it can be used from the Virtual OSD described in the Protocol Guide.

I-s Both the keypad and remote control have dedicated buttons allowing access to the Shutter Open Shutter Close, Power On and Power Off commands.

Main Menu

Setup System Color Enable

Th Do not switch off all colors at the same time. In the event of this happening, power cycle the projector to restore the default settings.

I-s At power on, all colors are enabled regardless of the previous setting.

Setting up an IR address

The projector and the remote control need a matching IR address: a two-digit number between 00 and 99 .

The default IR address is 00 . This is also a master address, which, if assigned to a remote, will work regardless of the value assigned to the projector.

To assign an IR address for the projector,

- Open the OSD, access Setup > System and select IR Address

To assign IR address for the remote:

1. Press and hold the ADDR button on the remote.
2. Press two number buttons sequentially to enter the address. For numbers less than 10 , use a leading zero.
3. Release the ADDR button.

The transmit indicator on the remote will flash twice to confirm the setting.

SYSTEM	
\Rightarrow Configuration	PIP
IR Address	0 0
$\begin{aligned} & \Rightarrow \text { Feature Contro } \\ & \Rightarrow \text { Shutter Open } \\ & \Rightarrow \text { Shutter Close } \\ & \Rightarrow \text { Power On } \\ & \text { Color Off Enable } \end{aligned}$	-

	Notes
Main Menu	
Setup	
System	

In Change the IR address of the projector before changing the address of the remote. You can check the value assigned to the projector by using the control panel to access Setup > System. However, you cannot check the value assigned to the remote.

In In the event of a mismatch between the projector and the remote, change the remote IR address to the master address or to the projector address. To check the projector address, access Setup > System using the control panel.

When fresh batteries are inserted in the remote control, it will revert to the default address 00. If you have previously assigned a different address, you need to change it manually.

If two or more projectors are assigned the same address, they can be controlled from one remote control, provided they are connected by cable or in range of the infrared.

Information menu

This menu gives information about lamp operating times, software and hardware configuration, input source and network settings.

Lamps

This menu gives information about lamp hours, starts and voltages.

INFORMATION	
Lamps	
Configuration	HDMI
Input	$1024 \times 768 \mathrm{p} 60 \mathrm{~Hz}$
Standard	192.168 .0 .000
Control IP	192.168 .0 .100
LAN IP	Yes
Bridgeboard Present	

LAMPS	
Lamp 1 Hours	$152: 25$
Lamp 1 Starts	97
Lamp 2 Hours	63
Lamp 2 Starts	
Lamp Voltages	

LAMP VOLTAGES	
Lamp 1	
Lamp 2	99

Notes

Configuration

This menu gives information about the various projector components. If you need to contact your dealer about an issue with the projector they may want you to quote some of the information shown on this page to help diagnose the problem.

CONFIGURATION	
Serial Number	DP07367
Scaler BL 07 FW 2-5-0.J	0174 DP
Interface	49.26
Hardware	42
Firmware	C
Factory ROM	2
OSD	4.0
Lens	0.79 HE
3D Hardware	1 C
3D Firmware	1 E
Sequences	$12.03(1)$

The values shown in the menu on this page are examples and may differ significantly on your OSD.

Main Menu

Information
Configuration

The configuration shown here is for a 3D model.

This page is intentionally left blank.

DIGITAL

Titan Super Quad Series Titan Quad 2000 Series Titan Quad Series
 Titan 930 Series

High Brightness Digital Video Projector

- REFERENCE GUIDE

IN THIS GUIDE

The DMD ${ }^{\text {m }}$ 98
Choosing A Lens. 100
Basic calculation 101
Basic calculation example 102
Full lens calculation 103
Introducing TRC 103
Calculating TRC 104
TRC table 104
Calculating the throw ratio with TRC 105
Full lens calculation example 106
Screen Requirements 107
Fitting the image to the DMD ${ }^{\text {TM }}$ 107
SX+ images displayed full width 107
SX+ images displayed full height. 107
1080p images displayed full width 108
1080p images displayed full height. 108
WUXGA images displayed full width 109
WUXGA images displayed with a height of 1080 pixels 109
WUXGA images displayed full height 110
Diagonal screen sizes 111
Fitting the image to the screen 112
Positioning the screen and projector. 113
Positioning The Image 114
Maximum offset range 116
Aspect Ratios Explained 117
Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution SX+ (SXGA+) 118
Aspect ratio examples for DMD $^{\text {TM }}$ resolution 1080p. 121
Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution WUXGA 124
Aspect ratio example: TheaterScope. 127
Frame Rates And Pulldowns Explained 128
Interlaced and progressive scan 128
Frame rates of image sources 128
Pulldowns - conversion into destination formats 129
2:3 (normal) pulldown 129
2:3:3:2 (advanced) pulldown 130
Appendix A: Lens Part Numbers 131
Appendix B: Lens Charts 132
How to use the lens charts 132
How to find the right lens chart 133
1080p (1920×1080 pixels). 133
WUXGA (1920×1200 pixels). 134
SX+ (1400×1050 pixels) 135
DMD ${ }^{\text {TM }}$ resolution 1080p / WUXGA, full width images 136
$D^{\text {DM }}{ }^{\text {TM }}$ resolution 1080p, 1.25:1 images 138
DMD $^{\text {TM }}$ resolution 1080p, 1.33:1 images 140
DMD ${ }^{\text {TM }}$ resolution 1080p, 1.6:1 images 142
DMD $^{\text {TM }}$ resolution 1080p, 1.66:1 images 144
DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.25:1 images 146
DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.33:1 images. 148
DMD ${ }^{\text {TM }}$ resolution $\mathrm{SX}+$, full width images 150
DMD $^{\text {TM }}$ resolution $\mathrm{SX}+$, 1.25:1 images 152
Appendix C: Supported Signal Input Modes 154
2D input modes 154
3D input modes 157

IN THIS GUIDE (continued)

Appendix D: Menu Map. 159
Input Selection 159
Test Pattern 159
Lens 159
Image 160
Color. 160
Geometry 161
Edge Blend 162
PIP 163
3D. 163
Lamps 163
Setup 164
Information 165
Appendix E: Wiring Details 166
Signal inputs and outputs 166
Input 1: VGA 166
Input 2: HDMI 167
Output: SPDIF. 167
Input 3: DVI. 168
Input 4: 3G-SDI 169
Input 5: Composite 1 169
Input 6: S-Video 169
Input 7: Component 169
Input 8: CVBS 169
Input 9: MAIN/DVI 170
Input 10: SUB/HDMI 171
Control connections 172
Update port 172
Wired remote control 172
RS232 173
LAN connection 173
Appendix F: Glossary Of Terms 174
Technical Specifications 187
Models 187
Inputs and outputs 188
Bandwidth 188
Remote control and keypad 188
Automation control 188
Color temperature 188
Lamps. 189
Lenses 190
Lens mount 190
Mechanical mounting 190
Orientation 190
Electrical and physical specifications 191
Safety \& EMC regulations 191
Accessories 191

The DMDTM

A DMD ${ }^{T M}$ (Digital Micromirror Device ${ }^{T M}$) is a true digital light modulator which utilises an array of up to 2.3 million moving aluminium mirrors, with each one representing a pixel in the final projected image. The outermost micromirrors in the array remain inactive (pond of mirrors) and are not used in constructing the image.
(2) Light shield
(3) Pond of mirrors
(4) Array

DMD

Each mirror element is suspended over address electrodes by a torsion hinge between two posts.
(1) Support posts
(2) Mirror element
(3) Torsion hinges
(4) Offset address electrode

Depending on the voltage polarity applied, each mirror will either tilt to the left to produce a bright pixel or to the right for a dark pixel. When light is applied to the complete DMD $^{\text {™ }}$, only the light redirected from a mirror tilting to the left is projected.
(1) Projection lens
(2) Incoming light from the lamp
(3) Mirror element tilted to the right
(4) Mirror element tilted to the left

5 Reflected light, left tilt
6 Light dump
(7) Reflected light, right tilt

Light flow
The projector optically filters white light from the lamp into its constituent red, green and blue. Each color illuminates a separate DMD ${ }^{\text {TM }}$ whose modulated output is then recombined with the other two to form the projected full color image.
(1) Lamp
(2) Optical filtering of light into red, green and blue
(3) Projection lens
(4) $\mathrm{DMD}^{T M}$ devices

5 Full color image displayed on screen

Filtering process

Choosing A Lens

A number of lenses are available. Which lens you choose depends on the screen size, image aspect ratio, throw distance and light output. In addition, each lens has a High Brightness and a High Contrast version.
The following table shows all available lenses in order of their throw ratios

Throw ratios for 1080p and WUXGA	Throw ratios for SX+	Lens extension ($\pm 2 \%$)	Throw distance range
0.67: 1 fixed lens	0.73: 1 fixed lens	204 mm (8.0 in.)	$1.1 \mathrm{~m}-10 \mathrm{~m}(3.6 \mathrm{ft}-32.8 \mathrm{ft})$
1.12: 1 fixed lens (3m-15 m)	1.21: 1 (3 m - 15 m) fixed lens	268 mm (10.6 in.)	$3 \mathrm{~m}-15 \mathrm{~m}(9.8 \mathrm{ft}-49.2 \mathrm{ft})$
1.12: 1 fixed lens (1.2 m-2 m)	1.21: 1 (1.2 m-2.0 m) fixed lens	268 mm (10.6 in.)	$1.2 \mathrm{~m}-2 \mathrm{~m}(3.9 \mathrm{ft}-6.6 \mathrm{ft})$
1.16-1.49: 1 zoom lens	1.26-1.61: 1 zoom lens	226 mm (8.9 in.)	$3 \mathrm{~m}-15 \mathrm{~m}(9.8 \mathrm{ft}-49.2 \mathrm{ft})$
1.39-1.87: 1 zoom lens	1.5-2.02: 1 zoom lens	194 mm (7.6 in.)	$4 \mathrm{~m}-24 \mathrm{~m}$ (13.1 ft - 78.7 ft)
1.87-2.56: 1 zoom lens	2.02-2.77: 1 zoom lens	159 mm (6.3 in.)	$4 \mathrm{~m}-24 \mathrm{~m}$ (13.1 ft - 78.7 ft)
2.56-4.17: 1 zoom lens	2.77-4.51: 1 zoom lens	145 mm (5.7 in.)	$9.1 \mathrm{~m}-45 \mathrm{~m}(29.9 \mathrm{ft}-147.6 \mathrm{ft})$
4.17-6.95: 1 zoom lens	4.51-7.53: 1 zoom lens	129 mm (5.1 in.)	$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
6.93-10.34: 1 zoom lens	7.5-11.2 : 1 zoom lens	179 mm (7.0 in.)	$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
1.50-2.17: 1 zoom lens	1.63-2.35: 1 zoom lens	184 mm (7.2 in.)	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
1.72-2.71: 1 zoom lens	1.86-2.93: 1 zoom lens	178 mm (7.0 in.)	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
2.15-3.36: 1 zoom lens	2.33-2.64: 1 zoom lens	180 mm (7.1 in.)	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$

To choose a lens, either calculate the throw ratio required, or use the lens charts provided at the end of this guide.

Notes

Ins The High Brightness lenses are recommended for the standard models, for maximum light output.

The High Contrast lenses are recommended for the Ultra Contrast models, for maximum contrast.
I. \gg The same lens has different effective throw ratios for WUXGA and 1080p, and for SX+, due to the different width of the DMD

Each time a new lens is fitted to the projector, the calibration procedure must be carried out. See Lens menu in the Operating Guide.

You can also use the information in Appendix B: Lens Charts to choose a lens.

For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Basic calculation

Identify the required lens by calculating the throw ratio.
A throw ratio is the ratio of the throw distance to the screen width:
Throw ratio $=\frac{\text { Throw distance }}{\text { Screen width }}$

1. Use the formula above to obtain the required throw ratio.
2. Match the throw ratio with a lens from the table below:

Throw ratios for 1080p and WUXGA	Throw ratios for SX+	Throw distance range
$0.67: 1$ fixed lens	$0.73: 1$ fixed lens	$1.1 \mathrm{~m}-10 \mathrm{~m}(3.6 \mathrm{ft}-32.8 \mathrm{ft})$
$1.12: 1$ fixed lens $(3 \mathrm{~m}-15 \mathrm{~m})$	$1.21: 1(3 \mathrm{~m}-15 \mathrm{~m})$ fixed lens	$3 \mathrm{~m}-15 \mathrm{~m}(9.8-49.2 \mathrm{ft})$
$1.12: 1$ fixed lens $(1.2 \mathrm{~m}-2 \mathrm{~m})$	$1.21: 1(1.2 \mathrm{~m}-2.0 \mathrm{~m})$ fixed lens	$1.2 \mathrm{~m}-2 \mathrm{~m}(3.9-6.6 \mathrm{ft})$
$1.16-1.49: 1$ zoom lens	$1.26-1.61: 1$ zoom lens	$3 \mathrm{~m}-15 \mathrm{~m}(9.8-49.2 \mathrm{ft})$
$1.39-1.87: 1$ zoom lens	$1.5-2.02: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1-78.7 \mathrm{ft})$
$1.87-2.56: 1$ zoom lens	$2.02-2.77: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1-78.7 \mathrm{ft})$
$2.56-4.17: 1$ zoom lens	$2.77-4.51: 1$ zoom lens	$9.1 \mathrm{~m}-45 \mathrm{~m}(29.9-147.6 \mathrm{ft})$
$4.17-6.95: 1$ zoom lens	$4.51-7.53: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4-262.5 \mathrm{ft})$
$6.93-10.34: 1$ zoom lens	$7.5-11.2: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4-262.5 \mathrm{ft})$
$1.50-2.17: 1$ zoom lens	$1.63-2.35: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$
$1.72-2.71: 1$ zoom lens	$1.86-2.93: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$
$2.15-3.36: 1$ zoom lens	$2.33-2.64: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$

3. Ensure the required throw distance is within the range covered by the lens.

Notes

This The basic calculation on this page does not take into consideration DMD ${ }^{\text {TM }}$ and image size, which could affect the throw ratio. For a more complex and realistic calculation, see Full lens calculation in this section.

Tow When calculating the throw ratio, be sure to use identical measurement units for both the throw distance and the screen width.

Tos You can also use the information in Appendix B: Lens Charts to choose a lens.

ITs. For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Basic calculation example

1. Calculate the throw ratio using the formula.

Your screen is 4.5 m wide and you wish to place your WUXGA projector approximately $\mathbf{1 1} \mathbf{m}$ from the screen. The throw ratio will then be

$$
\frac{11}{4.5}=2.44
$$

2. Match the result with the lens table.

The lenses matching a throw ratio of 2.44 are:

- the 1.87-2.56: 1 zoom lens
- the 1.72-2.71: 1 zoom lens
- the 2.15-3.36: 1 zoom lens

3. Check whether the lens covers the required throw distance.

The range quoted for the $1.87-2.56: 1$ zoom lens is $\mathbf{4} \boldsymbol{m}$ -24 m . The required distance of 11 m is within the range. The other two lenses have a range of $\mathbf{5 m - 2 5} \mathbf{~ m}$, also within the range.

INFORMATION YOU NEED FOR THIS CALCULATION

- The throw ratio formula:

Throw ratio $=\frac{\text { Throw distance }}{\text { Screen width }}$

- The lens table:

Throw ratios for 1080p and WUXGA
Throw distance range
0.67 : 1 fixed lens
1.12 : 1 fixed lens ($3 m-15 m$)
$\mathrm{m}(3.6 \mathrm{ft}-32.8 \mathrm{ft})$
$3 \mathrm{~m}-15 \mathrm{~m}(9.8 \mathrm{ft}-49.2 \mathrm{ft})$
1.12: 1 fixed lens ($1.2 \mathrm{~m}-2 \mathrm{~m}$)
$1.2 \mathrm{~m}-2 \mathrm{~m}(3.9 \mathrm{ft}-6.6 \mathrm{ft})$
$3 \mathrm{~m}-15 \mathrm{~m}$ ($9.8 \mathrm{ft}-49.2 \mathrm{ft})$
$4 \mathrm{~m}-24 \mathrm{~m}(13.1 \mathrm{ft}-78.7 \mathrm{ft})$
$4 \mathrm{~m}-24 \mathrm{~m}(13.1 \mathrm{ft}-78.7 \mathrm{ft})$
$9.1 \mathrm{~m}-45 \mathrm{~m}(29.9 \mathrm{ft}-147.6 \mathrm{ft})$
$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$

Notes

Thos The basic calculation on this page does not take into consideration DMD ${ }^{\text {TM }}$ and image size, which could affect the throw ratio. For a more complex and realistic calculation, see Full lens calculation in this section.

Tos You can also use the information in Appendix B: Lens Charts to choose a lens.

This For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Full lens calculation

Introducing TRC

The choice of lens will affect the image size and will address discrepancies between the DMD ${ }^{\text {TM }}$ resolution and the source.
When an image fills the height of the DMD ${ }^{\text {TM }}$ but not the width, it uses less than 100% of the DMD $^{\text {TM }}$ surface. A lens chosen using the basic formula may produce an image that is considerably smaller than the actual screen.

To compensate for loss of screen space in such situations, you need to increase the throw ratio using a Throw Ratio Correction (TRC).

Example

Fig. 1 illustrates a $4: 3$ image within a 1080 p DMD ${ }^{\text {m }}$
When a 1080p projector is used for a 4:3 image, the image does not fill the width of the $\mathrm{DMD}^{\text {TM }}$, creating a pillarboxing effect - blank spaces to the left and right.

Fig. 2 shows the same image projected on a 4:3 screen using a standard lens (chosen with the basic calculation).

The DMD ${ }^{\text {TM }}$ accurately fills the width of the screen; however, the pillarboxing is now part of the projected image and is transferred to the screen.
The DMD ${ }^{\text {TM }}$ does not fill the height of the screen, which has caused letterboxing - further blank spaces at the top and bottom of the screen.
The image is now surrounded by blank space, which can be removed if the throw ratio is increased.

Fig. 3 shows the image projected on the same screen with a lens chosen using TRC.
The increased throw ratio has allowed the 4:3 image to fill the 4:3 screen seamlessly.

Fig. 1

Fig. 2

Fig. 3

Notes

I-s TRC can only be applied if greater than 1. If TRC is 1 or less, disregard it and calculate the throw ratio using he basic formula

了- You can also use the information in Appendix B: Lens Charts to choose a lens.

For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Calculating TRC

To calculate TRC, use the following formula:
$T R C=\frac{D M D^{\text {TM }} \text { aspect ratio }}{\text { Source aspect ratio }}$

TRC table

Alternatively, you can save time by referencing the following table, which shows the TRC value for some popular image formats:

Image format	1080p projector	WUXGA projector	SX+ projector
2.35:1 (Scope), 1920×817 pixels	TRC <1, not used	TRC <1, not used	TRC <1, not used
1.85:1 (Flat), 1920×1037 pixels	TRC <1, not used	TRC <1, not used	TRC <1, not used
1.78:1 (16:9), 1920×1080	TRC $=1$, not used	TRC <1, not used	TRC <1, not used
1.66:1 (Vista), 1792×1080 pixels	TRC $=1.07$	TRC <1, not used	TRC <1, not used
1.6:1 (16:10), 1728×1080 pixels	TRC $=1.11$	TRC $=1$, not used	TRC <1, not used
1.33:1 (4:3), 1440×1080 pixels	TRC $=1.33$	TRC $=1.2$	TRC $=1$, not used
1.25:1 (5:4), 1350×1080 pixels	TRC $=1.42$	TRC $=1.28$	TRC $=1.07$

Notes

Thos TRC can only be applied if greater than 1. If TRC is 1 or less, disregard it and calculate the throw ratio using the basic formula.

Tos You can also use the information in Appendix B: Lens Charts to choose a lens.

Thos For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Calculating the throw ratio with TRC

1. For TRC > 1, amend the basic throw ratio formula as follows:

Throw ratio $=\frac{\text { Throw distance }}{\text { Screen width } \times \text { TRC }}$
2. Once a throw ratio is established, identify the matching lens from the table:

Throw ratios for 1080p and WUXGA	Throw ratios for SX+	Throw distance range
$0.67: 1$ fixed lens	$0.73: 1$ fixed lens	$1.1 \mathrm{~m}-10 \mathrm{~m}(3.6 \mathrm{ft}-32.8 \mathrm{ft})$
$1.12: 1$ fixed lens $(3 \mathrm{~m}-15 \mathrm{~m})$	$1.21: 1(3 \mathrm{~m}-15 \mathrm{~m})$ fixed lens	$3 \mathrm{~m}-15 \mathrm{~m}(9.8-49.2 \mathrm{ft})$
$1.12: 1$ fixed lens $(1.2 \mathrm{~m}-2 \mathrm{~m})$	$1.21: 1(1.2 \mathrm{~m}-2.0 \mathrm{~m})$ fixed lens	$1.2 \mathrm{~m}-2 \mathrm{~m}(3.9-6.6 \mathrm{ft})$
$1.16-1.49: 1$ zoom lens	$1.26-1.61: 1$ zoom lens	$3 \mathrm{~m}-15 \mathrm{~m}(9.8-49.2 \mathrm{ft})$
$1.39-1.87: 1$ zoom lens	$1.5-2.02: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1-78.7 \mathrm{ft})$
$1.87-2.56: 1$ zoom lens	$2.02-2.77: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1-78.7 \mathrm{ft})$
$2.56-4.17: 1$ zoom lens	$2.77-4.51: 1$ zoom lens	$9.1 \mathrm{~m}-45 \mathrm{~m}(29.9-147.6 \mathrm{ft})$
$4.17-6.95: 1$ zoom lens	$4.51-7.53: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4-262.5 \mathrm{ft})$
$6.93-10.34: 1$ zoom lens	$7.5-11.2: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4-262.5 \mathrm{ft})$
$1.50-2.17: 1$ zoom lens	$1.63-2.35: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$
$1.72-2.71: 1$ zoom lens	$1.86-2.93: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$
$2.15-3.36: 1$ zoom lens	$2.33-2.64: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4-82 \mathrm{ft})$

3. Ensure the required throw distance is within the range of the matching lens.

Notes

Thos TRC can only be applied if greater than 1. If TRC is 1 or less, disregard it and calculate the throw ratio using he basic formula

Tos You can also use the information in Appendix B: Lens Charts to choose a lens.

For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of his document.

Full lens calculation example

Your screen is 4.5 m wide; you wish to place the projector approximately 11 m from the screen. You use a WUXGA projector; the source is 4:3.

1. Calculate TRC as follows:

$$
T R C=\frac{1.6}{1.33}=1.2
$$

2. Calculate the throw ratio:

Throw ratio $=\frac{11}{4.5 \times 1.2}=2.04$
3. Find a match in the lens table.

The table shows that the lenses matching a throw ratio of 2.44 are:

- the 1.87-2.56: 1 zoom lens
- the 1.50-2.17 : 1 zoom lens
- the 1.72-2.71: 1 zoom lens

4. Check whether the lens covers the required throw distance.

The range quoted for the 1.87-2.56:1 zoom lens is $4 \boldsymbol{m} \mathbf{- 2 4} \boldsymbol{m}$. The required distance of 11 m is within the range.

The other two lenses have a range of $5 \boldsymbol{m} \mathbf{- 2 5} \mathbf{m}$, also within the range.

INFORMATION YOU NEED FOR THESE CALCULATIONS

- The TRC formula $T R C=\frac{D M D^{\text {TM }} \text { aspect ratio }}{\text { Source aspect ratio }}$
- The TRC table (to use instead of the formula)

Image format	WUXGA projector
2.35:1 (Scope)	TRC not used
1.85:1 (Flat)	TRC not used
1.78:1 (16:9)	TRC not used
1.66:1 (Vista)	TRC not used
1.6:1 (16:10)	TRC not used (native resolution)
1.33:1 (4:3)	TRC $=1.2$
$1.25: 1(5: 4)$	TRC $=1.28$

- The throw ratio formula

$$
\text { Throw ratio }=\frac{\text { Throw distance }}{\text { Screen width } \times T R C}
$$

- The lens table:

Throw ratios for 1080p and WUXGA	Throw distance range
$0.67: 1$ fixed lens	$1.1 \mathrm{~m}-10 \mathrm{~m}(3.6 \mathrm{ft}-32.8 \mathrm{ft})$
$1.12: 1$ fixed lens $(3 \mathrm{~m}-15 \mathrm{~m})$	$3 \mathrm{~m}-15 \mathrm{~m}(9.8 \mathrm{ft}-49.2 \mathrm{ft})$
$1.12: 1$ fixed lens $(1.2 \mathrm{~m}-2 \mathrm{~m})$	$1.2 \mathrm{~m}-2 \mathrm{~m}(3.9 \mathrm{ft}-6.6 \mathrm{ft})$
$1.16-1.49: 1$ zoom lens	$3 \mathrm{~m}-15 \mathrm{~m}(9.8 \mathrm{ft}-49.2 \mathrm{ft})$
$1.39-1.87: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1 \mathrm{ft}-78.7 \mathrm{ft})$
$1.87-2.56: 1$ zoom lens	$4 \mathrm{~m}-24 \mathrm{~m}(13.1 \mathrm{ft}-78.7 \mathrm{ft})$
$2.56-4.17: 1$ zoom lens	$9.1 \mathrm{~m}-45 \mathrm{~m}(29.9 \mathrm{ft}-147.6 \mathrm{ft})$
$4.17-6.95: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
$6.93-10.34: 1$ zoom lens	$12 \mathrm{~m}-80 \mathrm{~m}(39.4 \mathrm{ft}-262.5 \mathrm{ft})$
$1.50-2.17: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
$1.72-2.71: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$
$2.15-3.36: 1$ zoom lens	$5 \mathrm{~m}-25 \mathrm{~m}(16.4 \mathrm{ft}-82 \mathrm{ft})$

Notes

I-s You can also use the information in Appendix B: Lens Charts to choose a lens.

For information about individual lens part numbers, see Appendix A: Lens Part Numbers at the end of this document.

Screen Requirements

Fitting the image to the DMD ${ }^{\text {M }}$

If the source image supplied to the projector is smaller than the $\mathrm{DMD}^{\mathrm{TM}}$ resolution, the image will not fill the $\mathrm{DMD}^{\mathrm{TM}}$. The following examples show how a number of common formats may be displayed, depending on your DMD ${ }^{\text {TM }}$ resolution

SX+ images displayed full width

SX+ images displayed full height

1080p images displayed full width

1080p images displayed full height

WUXGA images displayed full width

WUXGA images displayed with a height of 1080 pixels

The images shown here cannot fill the full height of the $D M D^{\text {™ }}$, and will be scaled to a height of 1080 pixels.

WUXGA images displayed full height

Notes

T- Only WUXGA or UXGA images can fill the full height of the DMD ${ }^{\text {™ }}$ using all 1200 pixels without scaling.

Diagonal screen sizes

Screen sizes are sometimes specified by their diagonal size (D). When dealing with large screens and projection distances at different aspect ratios, it is more convenient to measure screen width (W) and height (H).

The example calculations below show how to convert diagonal sizes into width and height, at various aspect ratios.

2.35:1 (Scope)	$H=\mathrm{D} \times 0.39$
$W=\mathrm{D} \times 0.92$	
1.85:1	
$W=\mathrm{D} \times 0.88$	$H=\mathrm{D} \times 0.47$

16:9 $=1.78: 1$ (native aspect ratio for 1080 p projectors)
$\boldsymbol{W}=\mathrm{D} \times 0.87 \quad \boldsymbol{H}=\mathrm{D} \times 0.49$
$\begin{array}{ll}\text { 1.66:1 (Vista) } \\ W=D \times 0.86 & H=D \times 0.52\end{array}$
16:10 $=1.6: 1$ (native aspect ratio for WUXGA projectors)
$W=\mathrm{D} \times 0.85 \quad H=D \times 0.53$
4:3 = 1.33:1 (native aspect ratio for SX+ projectors)
$\boldsymbol{W}=\mathrm{D} \times 0.8 \quad \boldsymbol{H}=\mathrm{D} \times 0.6$

Fitting the image to the screen

It is important that your screen is of sufficient height and width to display images at all the aspect ratios you are planning to use.

Use the conversion chart, or the sample calculations below to check that you are able to display the full image on your screen. If you have insufficient height or width, you will have to reduce the overall image size in order to display the full image on your screen.
(1) $4: 3=1.33: 1$
(native aspect ratio for $\mathrm{SX}+$ projectors)
$W=H \times 1.33, H=W \times 0.75$
(2) $16: 10=1.6: 1$
(native aspect ratio for WUXGA projectors)
$\mathrm{W}=\mathrm{H} \times 1.6, \mathrm{H}=\mathrm{W} \times 0.625$
(3) $\mathbf{1 . 6 6 : 1}$ (Vista)
$W=H \times 1.66, H=W \times 0.6$
(4) $16: 9=1.78: 1$
(native aspect ratio for 1080p projectors)
$W=H \times 1.78, H=W \times 0.56$
(5) 1.85:1 (Flat)
$W=H \times 1.85, H=W \times 0.54$
(6) 2.35:1 (Scope)
$W=H \times 2.35, H=W \times 0.426$

Positioning the screen and projector

For optimum viewing, the screen should be a flat surface perpendicular to the floor. The bottom of the screen should be 1.2 m (4 ft) above the floor and the front row of the audience should not have to look up more than 30° to see the top of the screen.

The distance between the front row of the audience and the screen should be at least twice the screen height and the distance between the back row and the screen should be a maximum of 8 times the screen height. The screen viewing area should be within a 60° range from the face of the screen.

Notes

The projector should be installed as close to the power outlet as possible.
The power connection should be easily accessible, so that it can be disconnected in an emergency.

Ensure that there is at least 30 cm (12 in.) of space between the ventilation outlets and any wall, and 10 cm (4 in.) on all other sides.

Do not install the projector close to anything that might be affected by its operational heat, for instance, polystyrene ceiling tiles, curtains etc.

Th The image can be flipped for rear projection (see Setup menu in the Operating Guide) and displayed without the need for extra mirrors or equipment.

However, you must ensure that there is sufficient distance behind the screen for the projector to be correctly located.

Rear installation is generally more complicated and advice should be sought from your local dealer before attempting it.

Positioning The Image

The normal position for the projector is at the centre of the screen. However, you can set the projector above or below the centre, or to one side, and adjust the image using the Lens shift feature (known as rising and falling front) to maintain a geometrically correct image.

Notes

This For more information on shifting the lens, see Lens menu in the Operating Guide.

This Whenever possible, position the projector so that the lens is centered for the highest quality image.

Any single adjustment outside the ranges specified on the following page may result in an unacceptable level of distortion, particularly at the corners of the image, due to the image passing through the periphery of the lens optics.
If the lens is to be shifted in two directions combined, the maximum range without distortion will be somewhat less, as can be seen in the illustrations below.

Full horizontal or vertical shift

Combined shift is reduced

Notes

This For more information on shifting the lens, see Lens menu in the Operating Guide.

Maximum offset range

The maximum offset range available with no distortion or vignetting is dependent on which lens is used. Shifting the lens beyond its undistorted limits may be physically possible, however you may experience some vignetting or distortion.

for WUXGA projectors	vertical (pixels)	horizontal (pixels)	vertical (frames)	horizontal (frames)
$0.67: 1$ fixed lens	± 130	± 85	± 0.108	± 0.044
$1.16-1.49: 1$ zoom lens	± 490	± 360	± 0.408	± 0.188
$1.50-2.17: 1,1.72-2.71: 1$ and $2.15-3.36: 1$ zoom lenses	± 285	± 200	± 0.237	± 0.104
$1.12: 1$ fixed lenses and all other zoom lenses	$+680 /-540$	± 360	$+0.567 /-0.45$	± 0.188
		vertical	horizontal	
(pixels)	vertical (frames)	horizontal		
(frames)				

Aspect Ratios Explained

The appearance of a projected image on the screen depends on a combination of the following:

- The DMD ${ }^{\text {TM }}$ resolution:
- SX+ (SXGA+) with a 1400×1050 resolution, corresponding to an aspect ratio of 4:3
- 1080p with a 1920×1080 resolution, corresponding to an aspect ratio of 16:9
- WUXGA with a 1920×1200 resolution, corresponding to an aspect ratio of 16:10
- The aspect ratio of the input signal: 4:3, 16:9 or 16:10
- The value of the Aspect Ratio setting of the projector:
- Source - show the image with its original aspect ratio, not using the whole screen if the DMD $^{\text {TM }}$ aspect ratio does not match.
- Fill Display - fill the screen but force the DMD $^{\text {TM }}$ aspect ratio on the image.
- Fill \& Crop - fill the screen without changing the original aspect ratio but cropping the image to fit the DMD ${ }^{\text {TM }}$ aspect ratio.
- Anamorphic - force a 16:9 ratio on the source. You need this setting to resolve 16:9 images packed into a 4:3 frame, otherwise it distorts the image.
- TheaterScope is a special setting used in combination with an anamorphic lens, an optional accessory. It removes letterboxing from a 2.35:1 source packed into a 16:9 frame.

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution SX+ (SXGA+)

Source: 4:3 (native resolution)

Unused screen areas

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution SX+ (SXGA+) (continued)

Source: 16:9

1 Unused screen areas
(2) Cropped parts of the image

Aspect Ratio: Source

Aspect Ratio: Fill Display

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution SX+ (SXGA+) (continued)

1 Unused screen areas
2 Cropped parts of the image

Aspect Ratio: Source

Aspect Ratio: Fill Display

Aspect Ratio: Fill \& Crop

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution 1080p

Source: 4:3

Unused screen areas
(2) Cropped parts of the image

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution 1080p (continued)

Source: 16:9 (native resolution)

Aspect Ratio: Source / Fill Display / Fill \& Crop

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution 1080p (continued)

Source: 16:10

1 Unused screen areas
2 Cropped parts of the image

Aspect Ratio: Fill \& Crop

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution WUXGA

Source: 4:3

1 Unused screen areasCropped parts of the image

Aspect Ratio: Fill \& Crop

Aspect Ratio: Fill Display

Aspect Ratio: Anamorphic

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution WUXGA (continued)

Source: 16:9

Unused screen areas
(2) Cropped parts of the image

Aspect Ratio: Source

Aspect Ratio: Fill Display

Aspect Ratio: Fill \& Crop

Aspect ratio examples for DMD ${ }^{\text {TM }}$ resolution WUXGA (continued)

Source: 16:10 (native resolution)

Aspect Ratio: Source / Fill Display / Fill \& Crop

Aspect ratio example: TheaterScope

The TheaterScope setting is used in combination with an anamorphic lens to restore 2.35:1 images packed into a 16:9 frame. Such images are projected with black lines at the top and bottom of the 16:9 screen to make up for the difference in aspect ratios.
Without an anamorphic lens and without the TheaterScope setting applied, a 16:9 source containing a 2.35:1 image looks like this:
Black margin - part of the source

Black margin - part of the source

If we change the setting to TheaterScope, the black lines will disappear but the image will stretch vertically to reach the top and bottom of the $\mathrm{DMD}^{\text {TM }}$:

An anamorphic lens will stretch the image horizontally, restoring the original 2.35 ratio:

Frame Rates And Pulldowns Explained

Interlaced and progressive scan

A progressive scan is a method of updating the image by drawing all the lines of each frame in a sequence. In contrast, interlaced video alternately scans odd and even lines. In old analog TV interlacing was commonly used as a way of doubling the refresh rate without consuming extra bandwidth.
The following artifacts are common with interlaced video:

- edge tear (combing)

The image lands between two fields and blurs. This is commonly observed when viewing rapid lateral movement.

- aliasing (stair-stepping)

The texture of the image becomes populated with unrealistic patterns. Aliasing occurs because of differences between the original frame rate and the destination format

- twitter

The image shimmers, for example when showing rolling credits. This happens when the image contains thin horizontal lines that only appear in one field.

Frame rates of image sources

Original analog films are made at 24 fps and the whole frame is projected at once. To eliminate flicker and create an impression of continuous movement, the projector blades divide the images so that the viewer sees 48 frames per second

Interlaced video scans odd lines, then even. Two fields are blended into one image. NTSC video (60i) is 29.97 fps , or 59.94 fields per second.
$\mathbf{2 4 p}$ video is progressive but without the benefit of projector blades dividing the images, so it looks jumpier on playback than film. 24 p is the optimal format for projects that are finished on film.
$\mathbf{3 0 p}$ is optimal for projects finished on video. It has fewer strobing issues than 24 p in video playback.

Pulldowns - conversion into destination formats

Pulldowns are a method of converting a 24 p source into a different destination format by adding extra frames to the source.

2:3 (normal) pulldown

This method is used to convert a 24 p source (film) into a 60i destination (NTSC video) by adding two extra fields for every four frames, effectively increasing the frame rate to 30 fps . The frame is split into fields and then two fields are repeated for every four original frames as shown in the illustration below.
Original film, Field 1 (odd)
24 fps

2:3:3:2 (advanced) pulldown

This method is very similar to the normal pulldown. Unlike the normal pulldown method, the resulting 30 fps video sequence contains only one frame containing fields from two different source frames.
The advantage of this method is that it is easier to reverse, if necessary.

Original film, 24 fps	Field 1 (odd)	Field 2 (even)

Appendix At Lens Part Numbers

Throw ratios for 1080p and WUXGA projectors	Throw ratios for $\mathbf{S X +}$		Lens extension $(\pm 2 \%)$	Throw distance range	Part number for High Brightness lens
$0.67: 1$ fixed lens	$0.73: 1$ fixed lens	$204 \mathrm{~mm}(8.0 \mathrm{in})$.	$1.1-10 \mathrm{~m}(3.6-32.8 \mathrm{ft})$	$105-607$	$107-195$
lens					

Notes

了一s
The throw ratios given here apply only when the image fills the width of the $D M D$.

For images that do not fill the width of the DMD, the throw ratio needs to be recalculated using a throw ratio correction (TRC).

For further information, see Choosing A Lens and Appendix B: Lens Charts in this guide

Thos Throw distance calculations are based on the distance from the outer end of the lens, which will vary from lens to lens.

Tos The High Brightness lenses are recommended for the standard models, for maximum light output.

The High Contrast lenses are recommended for the Ultra Contrast models, for maximum contrast.

Thos Lens extension is measured when the lens is focussed at infinity, and fully extended. At other focus settings, the extension could be up to 10 mm less.

Appendix B: Lens Charts

How to use the lens charts

The lens charts on the following pages provide a quick guide to the type of lens needed for a particular projector.

To use the lens charts, you need the following information:

- The DMD resolution of your projector
- The distance between the projector and the screen (throw distance)
- The maximum width of your screen

In the chart for the required DMD resolution, find the point where the throw distance corresponds to the screen width, as shown in the example below.

Example

For a 1080p projector with

- throw distance 28 m , and
- screen width 7 m ,
the correct lens would be number 7 in the chart.

Notes

Th For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

How to find the right lens chart

Charts are shown in order of DMD resolution, as follows:

- 1080p
- wUXGA
- SX+

For each resolution, the available lenses are shown in different charts depending on applicable throw ratio corrections (TRC),
For each resolution, lens charts are arranged in ascending TRC order, starting from full width images, where TRC=1.
All full width images are grouped together. 1080p and WUXGA are shown in the same chart.

1080p (1920 x 1080 pixels)

Full width images - the same chart

Formats that fit the width of the $\mathrm{DMD}^{\mathrm{TM}}$ without applying a throw ratio correction (TRC) include:

- 2.35:1 (Scope)
1920×817 pixels
$T R C=1$
- $1.85: 1$ (Flat) 1920×1037 pixels

TRC $=1$

- 1.78:1 (16:9)
1920×1080 pixels (native resolution)
TRC = 1

Notes

Tos For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

WUXGA (1920 x 1200 pixels)

Full width images - the same chart
Formats that fit the width of the DMD $^{\text {TM }}$ without applying a throw ratio correction (TRC) include:

- 2.35:1 (Scope)
1920×817 pixels
TRC = 1
- 1.85:1 (Flat) 1920×1037 pixels
- $1.78: 1$ (16:9) 1920×1080 pixels
- 1.66:1 (Vista) 1920×1156 pixels
- 1.6:1 (16:10)
1920×1200 pixels (native resolution)
TRC =

Full height images - different charts

A throw ratio correction (TRC) has been applied to the following charts:

- $1.25: 1(5: 4) \quad 1500 \times 1200$ pixels \quad TRC $=1.28$
- $1.33: 1(4: 3) \quad 1600 \times 1200$ pixels \quad TRC $=1.2$

Notes

Th For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

SX+ (1400 x 1050 pixels)

Full width images - the same chart

Formats that fit the width of the DMD ${ }^{\text {TM }}$ without applying a throw ratio correction (TRC) include:

- 2.35:1 (Scope) 1400×596 pixels

TRC = 1

- 1.85:1 (Flat) 1400×757 pixels

TRC = 1

- $1.78: 1$ (16:9) 1400×786 pixels

TRC $=1$

- 1.66:1 (Vista) 1400×843 pixels TRC $=1$
- $1.6: 1$ (16:10) 1400×875 pixels

TRC $=1$

- $1.33: 1$ (4:3)
1400×1050 pixels (native resolution)
$T R C=1$

Full height images - different charts

A throw ratio correction (TRC) has been applied to the following chart:
1.25:1 (5:4)
1312×1050 pixels
TRC $=1.07$

Notes

This For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD ${ }^{\text {TM }}$ resolution 1080p / WUXGA, full width images

For 1080p, full width images are 2.35:1 (Scope), 1.85:1 (Flat) 1.78:1 (native).
For WUXGA, full width images are all of the above, plus $1.66: 1$ (Vista) and $1.6: 1$ (native).
(1) $1.12: 1$ fixed lens (short)
(2) 0.67:1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49:1 zoom lens
(5) 1.39-1.87:1 zoom lens

6 1.87-2.56:1 zoom lens
(7) Other lenses (next page)
(8) 2.56-4.17:1 zoom lens
(9) 4.17-6.95:1 zoom lens

10 6.93-10.34:1 zoom lens

Notes

This chart has a TRC of 1.0, for use with the following images:

For WUXGA:
2.35:1 (Scope), 1.85:1 (Flat), 1.78:1 (16:9), 1.66:1 (Vista) and 1.6:1 (native)

For 1080p:
2.35:1 (Scope), 1.85:1 (Flat) and 1.78:1 (native)

Th For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD ${ }^{\text {TM }}$ resolution 1080p/WUXGA, full width images (continued)

Notes

This chart has a TRC of 1.0, for use

For 1080p:
2.35:1 (Scope), 1.85:1 (Flat) and 1.78:1 (native)For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

```
For WUXGA:
2.35:1 (Scope), 1.85:1 (Flat), 1.78:1 (16:9), 1.66:1 (Vista) and 1.6:1 (native)
        and 1.6:1 (native)
```

 Lens Part Numbers.
 (1) 1.50-2.17: 1 zoom lens
(2) 1.72-2.71: 1 zoom lens

3 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution 1080 p, 1.25:1 images

(1) 1.12 : 1 fixed lens (short)
(2) 0.67 : 1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49: 1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens
(9) 4.17-6.95:1 zoom lens
(10) 6.93-10.34:1 zoom lens

Notes

30
This chart has a TRC of 1.42, for use with the following images:

	$1.25: 1$ (5:4)	

Ins For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD $^{\text {TM }}$ resolution 1080p, 1.25:1 images (continued)

Notes

This chart has a TRC of 1.42, for use with the following images:

	$1.25: 1(5: 4)$	

For information about individual lens part numbers, see Appendix A: Lens Part Numbers. lens.
(1) 1.50-2.17:1 zoom lens
(2) 1.72-2.71:1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution 1080p, 1.33:1 images

(1) 1.12 : 1 fixed lens (short)
(2) 0.67 : 1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49: 1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens

9 4.17-6.95:1 zoom lens
(10) 6.93-10.34:1 zoom lens

Notes

3.5

This chart has a TRC of 1.33, for use with the following images:

	$1.33: 1(4: 3)$	

Ins For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD $^{\text {TM }}$ resolution 1080p, 1.33:1 images (continued)

Notes

	$1.33: 1(4: 3)$	

Ins For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

This chart has a TRC of 1.33, for use with the following images:
$1.33: 1$ (4:3)
(1) 1.50-2.17:1 zoom lens
(2) 1.72-2.71:1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution 1080p, 1.6:1 images

(1) $1.12: 1$ fixed lens (short)
(2) $0.67: 1$ fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49:1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens
(9) 4.17-6.95:1 zoom lens
(10) 6.93-10.34: 1 zoom lens

Notes

This This chart has a TRC of 1.11, for use with the following images:

Bor information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD ${ }^{\text {TM }}$ resolution 1080p, 1.6:1 images (continued)

Notes

This chart has a TRC of 1.11, for use with the following images:

Thor For information about individual lens part numbers, see Appendix A: Lens Part Numbers.
$3-5$
(1) 1.50-2.17:1 zoom lens
(2) 1.72-2.71:1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution 1080 p, 1.66:1 images

(1) $1.12: 1$ fixed lens (short)
(2) 0.67 : 1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49: 1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens
(9) 4.17-6.95: 1 zoom lens
(10) 6.93-10.34:1 zoom lens

Notes

Thos This chart has a TRC of 1.07, for use with the following images:

Ins For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD $^{\text {TM }}$ resolution 1080p, 1.66:1 images (continued)

Notes

This chart has a TRC of 1.07, for use with the following images:

Bor information about individual lens part numbers, see Appendix A: Lens Part Numbers.
了一s

(1) 1.50-2.17: 1 zoom lens
(2) 1.72-2.71: 1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.25:1 images

(1) 1.12 : 1 fixed lens (short)
(2) 0.67 : 1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49: 1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens

9 4.17-6.95: 1 zoom lens
(10) 6.93-10.34:1 zoom lens

Notes

3.5

This chart has a TRC of 1.28, for use with the following images:

	$1.25: 1(5: 4)$	

Tos For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.25:1 images (continued)

Notes

This chart has a TRC of 1.28, for use with the following images:

	$1.25: 1$ (5:4)	

Tos For information about individual lens part numbers, see Appendix A: Lens Part Numbers.
(1) 1.50-2.17:1 zoom lens

2 1.72-2.71:1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution WUXGA, 1.33:1 images

(1) 1.12 : 1 fixed lens (short)
(2) 0.67:1 fixed lens
(3) 1.12-1 fixed lens
(4) 1.16-1.49: 1 zoom lens
(5) 1.39-1.87:1 zoom lens
(6) 1.87-2.56: 1 zoom lens

7 Other lenses (next page)
(8) 2.56-4.17:1 zoom lens

9 4.17-6.95: 1 zoom lens
(10) 6.93-10.34:1 zoom lens

Notes

3.5

This chart has a TRC of 1.2, for use with the following images:

	$1.33: 1(4: 3)$

Th ${ }^{\infty}$ For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD $^{\text {™ }}$ resolution WUXGA, 1.33:1 images (continued)

Notes

This chart has a TRC of 1.2, for use with the following images:

Tos For information about individual lens part numbers, see Appendix A: Lens Part Numbers.
(1) 1.50-2.17:1 zoom lens

2 1.72-2.71:1 zoom lens
(3) 2.15-3.36:1 zoom lens

DMD ${ }^{\text {TM }}$ resolution $\mathbf{S X +}$, full width images

For SX+, full width images are 2.35:1 (Scope), 1.85:1 (Flat) 1.78:1 (16:9), 1.66:1 (Vista), 1.6:1 (16:10), and 1.33:1 (4:3, native aspect ratio).

1 1.21:1 fixed lens (short)
(2) $0.73: 1$ fixed lens
(3) 1.21-1 fixed lens
(4) 1.26-1.61: 1 zoom lens
(5) 1.5-2.02: 1 zoom lens
(6) 2.02-2.77: 1 zoom lens
(7) Other lenses (next page)
(8) 2.77-4.51: 1 zoom lens
(9) 4.51-7.53:1 zoom lens
(10) 7.5-11.2: 1 zoom lens

Notes

300
This chart has a TRC of 1.0, for use with the following images:
2.35:1 (Scope), 1.85:1 (Flat),
1.78:1 (16:9), 1.66:1 (Vista), 1.6:1 (16:10) and 1.33:1 (native)

I-s For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD ${ }^{\text {TM }}$ resolution SX+, full width images (continued)

This chart has a TRC of 1.0, for use with the following images:
2.35:1 (Scope), 1.85:1 (Flat)
1.78:1 (16:9), 1.66:1 (Vista), 1.6:1 (16:10) and 1.33:1 (native)

For information about individual lens part numbers, see Appendix A: Lens Part Numbers.
(1) 1.63-2.35: 1 zoom lens
(2) 1.86-2.93:1 zoom lens
(3) 2.33-3.64:1 zoom lens

DMD $^{\text {TM }}$ resolution $\mathrm{SX}+$, 1.25:1 images

1. 1.21 : 1 fixed lens (short)
(2) 0.73 : 1 fixed lens
(3) 1.21-1 fixed lens
(4) 1.26-1.61:1 zoom lens
(5) 1.5-2.02: 1 zoom lens
(6) 2.02-2.8:1 zoom lens
$(7$ Other lenses (next page)
(8) 2.77-4.51:1 zoom lens

9 4.51-7.53:1 zoom lens
10 7.5-11.2: 1 zoom lens

Notes

This This chart has a TRC of 1.07, for use with the following images:

For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

DMD $^{\text {TM }}$ resolution $\mathrm{SX}+$, $1.25: 1$ images (continued)

Notes

305
This chart has a TRC of 1.07, for use with the following images:

了os
For information about individual lens part numbers, see Appendix A: Lens Part Numbers.

Appendix C: Supported Signal Input Modes
2D input modes

							$\begin{aligned} & \text { 岕 } \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 【 } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \bar{\sum} \\ & \text { 모 } \\ & \text { ì } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { N} \\ & \text { U } \end{aligned}$
SDTV	480i	720×480	59.94	525	15.73	\checkmark	\checkmark			\checkmark
	576i	720×576	50.00	625	15.63	\checkmark	\checkmark			\checkmark
EDTV	480p59	720×480	59.94	525	31.47		\checkmark		\checkmark	\checkmark
	480p60	720×480	60.00	525	31.50		\checkmark		\checkmark	\checkmark
	576p50	720×576	50.00	625	31.25		\checkmark		\checkmark	\checkmark
HDTV	720p50	1280×720	50.00	750	37.50		\checkmark		\checkmark	\checkmark
	720p59	1280×720	59.94	750	44.96		\checkmark		\checkmark	\checkmark
	720p60	1280×720	60.00	750	45.00		\checkmark		\checkmark	\checkmark
	1080s23	1920×1080	23.98	1125	26.97		\checkmark		\checkmark	\checkmark
	1080p23	1920×1080	23.98	1125	26.97		\checkmark		\checkmark	\checkmark
	1080s24	1920×1080	24.00	1125	27.00		\checkmark		\checkmark	\checkmark
	1080p24	1920×1080	24.00	1125	27.00		\checkmark		\checkmark	\checkmark
	1080p25	1920×1080	25.00	1125	28.13		\checkmark		\checkmark	\checkmark
	1080p29	1920×1080	29.97	1125	33.72		\checkmark		\checkmark	\checkmark
	1080p30	1920×1080	30.00	1125	33.75		\checkmark		\checkmark	\checkmark
	1080i50	1920×1080	50.00	1125	28.13		\checkmark		\checkmark	\checkmark
	1080p50	1920×1080	50.00	1125	56.25		\checkmark		\checkmark	\checkmark
	1080 i59	1920×1080	59.94	1125	33.72		\checkmark		\checkmark	\checkmark
	1080p59	1920×1080	59.94	1125	67.43		\checkmark		\checkmark	\checkmark

								$\begin{aligned} & \mathbb{4} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		\bar{O} ¢ ¢
HDTV continued	1080 i 60	1920×1080	60.00	1125	33.75		\checkmark		\checkmark	\checkmark
	1080p60	1920×1080	60.00	1125	67.50		\checkmark		\checkmark	\checkmark
COMPUTER	VGA59	640×480	59.94	525	31.47			\checkmark	\checkmark	
	VGA60	640×480	60.00	525	31.50			\checkmark	\checkmark	
	MACI	640×480	66.67	525	35.00			\checkmark	\checkmark	
	VGA72	640×480	72.81	520	37.86			\checkmark	\checkmark	
	VGA75	640×480	75.00	500	37.50			\checkmark	\checkmark	
	DOS70	720×400	70.09	449	31.47			\checkmark	\checkmark	
	SVGA50	800×600	49.92	621	31.00			\checkmark	\checkmark	
	SVGA56	800×600	56.25	625	35.16			\checkmark	\checkmark	
	SVGA60	800×600	60.32	628	37.88			\checkmark	\checkmark	
	SVGA72	800×600	72.19	666	48.08			\checkmark	\checkmark	
	SVGA75	800×600	75.00	625	46.88			\checkmark	\checkmark	
	MACII	832×624	75.08	1120	49.10			\checkmark	\checkmark	
	XGA50	1024×768	49.98	793	39.63			\checkmark	\checkmark	
	XGA60	1024×768	60.00	806	48.36			\checkmark	\checkmark	
	XGA70	1024×768	70.07	806	56.48			\checkmark	\checkmark	
	XGA75	1024×768	75.03	800	60.02			\checkmark	\checkmark	
	XGA+70	1152×864	70.01	912	63.85				\checkmark	
	XGA+75	1152×864	75.00	900	67.50				\checkmark	
	MAC2	1152×870	75.06	915	68.68			\checkmark	\checkmark	
	SUN1166	1152×900	66.00	937	61.85			\checkmark	\checkmark	

							$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbb{4} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		$\bar{\circ}$ © ©
COMPUTER continued	WXGA50	1280×720	49.83	744	37.07				\checkmark	
	WXGA60	1280×720	59.86	748	44.77				\checkmark	
	WXGA50	1280×768	49.92	793	39.59				\checkmark	
	WXGA60	1280×768	59.87	798	47.78				\checkmark	
	SXGA-60	1280×960	60.00	1000	60.00				\checkmark	
	SXGA50	1280×1024	49.84	1057	52.68			\checkmark	\checkmark	
	SXGA60	1280×1024	60.02	1066	63.98			\checkmark	\checkmark	
	SXGA75	1280×1024	75.02	1066	79.98			\checkmark	\checkmark	
	HD50	1360×768	49.89	793	39.56				\checkmark	
	HD60	1360×768	59.80	798	44.72				\checkmark	
	SXGA+50	1400×1050	49.97	1083	54.12			\checkmark	\checkmark	
	SXGA+60	1400×1050	59.98	1089	65.32			\checkmark	\checkmark	
	WSXGA50	1536×960	49.93	991	49.48				\checkmark	
	WSXGA60	1536×960	59.91	996	59.67				\checkmark	
	UXGA50	1600×1200	49.92	1238	61.78			\checkmark	\checkmark	
	UXGA60	1600×1200	60.00	1250	75.00			\checkmark	\checkmark	
	WSXGA+60	1680×1050	59.95	1089	65.29				\checkmark	
	FHD50	1920×1080	49.92	1114	55.62			\checkmark	\checkmark	
	FHD60	1920×1080	59.93	1125	66.59			\checkmark	\checkmark	
	WUXGA50	1920×1200	49.93	1238	61.81			\checkmark	\checkmark	
	WUXGA60	1920×1200	59.95	1235	74.04			\checkmark	\checkmark	

3D input modes

					ㄹ		$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{\overline{0}}{7} \\ & 0 \end{aligned}$			$\overline{0}$ 0 0 0
720p50 Frame Packing	1280×720	50.00	1470	37.50	\checkmark	\checkmark				
720p59 Frame Packing	1280×720	59.94	1470	44.96	\checkmark	\checkmark				
720p60 Frame Packing	1280×720	60.00	1470	45.00	\checkmark	\checkmark				
720p50 Top-and-Bottom	1280×720	50.00	750	37.50	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
720p59 Top-and-Bottom	1280×720	59.94	750	44.96	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
720p60 Top-and-Bottom	1280×720	60.00	750	45.00	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p23 Frame Packing	1920×1080	23.98	2205	26.97	\checkmark	\checkmark				
1080p24 Frame Packing	1920×1080	24.00	2205	27.00	\checkmark	\checkmark				
1080i50 Side-by-Side (Half)	1920×1080	50.00	1125	56.25	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080i59 Side-by-Side (Half)	1920×1080	59.94	1125	67.43	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080i60 Side-by-Side (Half)	1920×1080	60.00	1125	67.50	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p50 Side-by-Side (Half)	1920×1080	50.00	1125	56.25	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p59 Side-by-Side (Half)	1920×1080	59.94	1125	67.43	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p60 Side-by-Side (Half)	1920×1080	60.00	1125	67.50	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p50 Top-and-Bottom	1920×1080	50.00	1125	56.25	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p59 Top-and-Bottom	1920×1080	59.94	1125	67.43	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p60 Top-and-Bottom	1920×1080	60.00	1125	67.50	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p50 Frame Sequential	1920×1080	50.00	1125	56.25	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p59 Frame Sequential	1920×1080	59.94	1125	67.43	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p60 Frame Sequential	1920×1080	60.00	1125	67.50	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
1080p23 Dual Pipe	1920×1080	23.98	1125	26.97			\checkmark			
1080p24 Dual Pipe	1920×1080	24.00	1125	27.00			\checkmark			

Notes

I-s 3D may not be present on some models.

In Only the Sub / HDMI input supports HDMI 1.4 3D formats.

I- Geometric correction is only available when using frame sequential formats on the DVI-A / VGA / Component / DVI-D / HDMI / 3G-SDI inputs.

						$\begin{aligned} & \bar{\Sigma} \\ & \text { 모 } \\ & \text { 兼 } \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \frac{0}{2} \\ & \frac{1}{0} \end{aligned}$			$\begin{aligned} & \bar{O} \\ & \text { © } \\ & \text { نల } \end{aligned}$
1080p25 Dual Pipe	1920×1080	25.00	1125	28.13			\checkmark			
1080p30 Dual Pipe	1920×1080	30.00	1125	33.75			\checkmark			
1080p50 Dual Pipe	1920×1080	50.00	1125	56.25			\checkmark			
1080p59 Dual Pipe	1920×1080	59.94	1125	67.43			\checkmark			
1080p60 Dual Pipe	1920×1080	60.00	1125	67.50			\checkmark			

Notes

Thos 3D may not be present on some models.
Ins Only the Sub / HDMI input supports HDMI 1.4 3D formats.

In Geometric correction is only available when using frame sequential formats on the DVI-A / VGA / Component / DVI-D / HDMI / 3G-SDI inputs.

Appendix Di Menu Map	
Main Menu	Sub Menus
Input Selection	
	All models: Composite 1, Com
	3D models only: Main/DVI, S
Test Pattern	
	Gray V Bars, Gray H Bars, Asp
Fens	
	Zoom In (command)
	Zoom Stop (command)
	Zoom Out (command)
	Focus Near (command)
	Focus Stop (command)
	Focus Far (command)
	Calibrate Zoom (command)
	Calibrate Focus (command)
	Center Lens (command)
Nudge	
Up (command)	
Down (command)	
Left (command)	
Right (command)	

Main Menu	Sub Menus	Notes
Image	Brightness (slider, value range -50 ~ 50 [0]) Contrast (slider, value range -50 ~ 50 [0]) Gamma , 1.0, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8 Hue (slider, value range -50~50 [0]) Saturation (slider, value range -50~50 [0]) Black Level Offset 0 IRE, 7.5 IRE V Position (slider, value range 0 ~ 200 [100]) H Position (slider, value range 0 ~ 200 [100]) Video Filters Sharpness (slider, value range -50 ~ 50 [0]) Detail (slider, value range $\underline{0} \sim 3$) Luma Sharpness (slider, value range $\underline{0} \sim 2$) Chroma Sharpness (slider, value range $\underline{0} \sim 2$) Recursive NR (slider, value range $\underline{0} \sim 3$) Mosquito NR (slider, value range $\underline{0} \sim 3$) Cross Color Suppression Off, On VGA Setup Phase (slider, value range -50 ~ 50 [0]) Total H Samples (slider, value range-50 ~ 50 [0]) Auto Setup (command)	Some of the information in this menu map is summarised. See the actual menu on the projector for full detail. The underlined text represents the factory default value for each setting.
Color	Gamut Peak, HDTV, SDTV, 3200k, 5400k, 6500k, 8000k, 9000k, User 1, User 2 Red Black Level (slider, value range -50 ~ 50 [0]) Green Black Level (slider, value range -50 ~ 50 [0]) Blue Black Level (slider, value range -50 ~ 50 [0]) Red Gain (slider, value range -50 ~ 50 [0]) Green Gain (slider, value range -50~50 [0]) Blue Gain (slider, value range -50~50 [0])	

Main Menu	Sub Menus	Notes
Edge Blend		Ins Some of the information in this menu
	Array Width (slider, value range 1 ~ 4)	map is summarised. See the actual menu on the projector for full detail.
	Array Height (slider, value range 1 ~ 4)	
	Array H Position (slider, value range $\underline{0} \sim 3$)	7 -
	Array V Position (slider, value range $\underline{0} \sim 3$)	The underlined text represents the factory default value for each
	S-Curve Value (slider, value range 10 ~ 25)	setting.
	Blending Off, On, Align Pattern	
	Segmentation Off, On	3-sis PIP and Edge Blend are mutually
	Blend Width	PIP and Edge Blend are mutually exclusive modes of operation. When
	Top Blend Region (slider, value range \underline{O} ~ 999)	in PIP mode, Edge Blend is not
	Bottom Blend Region (slider, value range 0 ~ 999) Left Blend Region (slider, value range 0 ~ 999)	available, and vice versa.
	Right Blend Region (slider, value range $\underline{0}$ ~ 999)	
	Apply Blend Regions (command)	
	Black Level Uplift	
	Unblended Region (slider, value range $\underline{0} \sim 63$)	
	Upper Left (slider, value range $\underline{0}$ ~ 63)	
	Upper Middle (slider, value range $\underline{0}$ ~ 63)	
	Upper Right (slider, value range $\underline{O} \sim 63$)	
	Middle Left (slider, value range $\underline{\underline{O}} \sim 63$)	
	Middle Right (slider, value range $\underline{0}$ ~ 63)	
	Lower Left (slider, value range $\underline{0} \sim 63$)	
	Lower Middle (slider, value range $\underline{0}$ ~ 63)	
	Lower Right (slider, value range $\underline{0} \sim$ 63)	
	Apply Uplift (command)	
	Reduce Black Level Uplift Width	
	Upper Left X (slider, value range $\underline{0}$ ~ 200)	
	Upper Left Y (slider, value range $\underline{\underline{O}} \sim 200$)	
	Upper Right X (slider, value range -200~0)	
	Upper Right Y (slider, value range $\underline{0} \sim 200$)	
	Lower Left X (slider, value range -200 ~ 0)	
	Lower Left Y (slider, value range -200~0)	
	Lower Right X (slider, value range $\underline{0} \sim 200$)	
	Lower Right Y (slider, value range -200 ~ 0)	
	Apply Uplift (command)	

Main Menu	Sub Menus	
PIP	Option Off, PIP, PAP, POP Input Composite 1, Composite 2, S-Video, Component, VGA, 3G-SDI, DVI, HDMI Size Small, Medium, Large Position Top Left, Top Right, Bottom Left, Bottom Right, Custom Custom H Position (slider, value range 0 ~ 100 [5]) Custom V Position (slider, value range 0 ~ 100 [5])	Some of the information in this menu map is summarised. See the actual menu on the projector for full detail. The underlined text represents the factory default value for each setting.
3D	3D Enable Off, On Frame Rate Multiplier x1, x2, x3 3D Type Auto, Sequential, Frame Packing, Top-and-Bottom, Side-by-Side (Half) Dark Time Minimum, $650 \mu \mathrm{~S}, 1300 \mu \mathrm{~S}, 7500 \mu \mathrm{~S}$ Sync Offset 000μ S (slider, value range -15 ~ 15 [0]) Output Sync Polarity Positive, Negative Source Dominance Left, Right	PIP and Edge Blend are mutually exclusive modes of operation. When in PIP mode, Edge Blend is not available, and vice versa. The 3D menu is not available with 2D projectors
Lamps	Operation (quad lamp models): All Lamps, Auto 3, Auto 2, Auto 1 Operation (dual lamp models): Lamp 1 + Lamp 2, Lamp 1, Lamp 2, Auto 1 Power (slider, value range 80 - 100) Compensation: Auto, Manual Compensation: (slider, value range 0 ~ 200 [100]) Conditioning (Titan Super Quad, Titan Quad 2000 and Titan 930 only): On, Off	

Main Menu	Sub Menus
Setup	
	Orientation Desktop Front, Desktop Rear, Ceiling Front, Ceiling Rear
	Latency Lowest, Best Video
	Input Configuration
	DVI Boost EQ Off, On
	DVI / HDMI Color Space RGB, YPbPr, Auto
	DVI / HDMI Range Full, Limited, Auto
	DVI-I Port Digital, Analog
	Main / DVI Operation Single Link A, Single Link B, Auto
	Main / DVI Range Full, Limited
	Component Color Space RGB, YPbPr
	Component Sync Type 3 Wire, 4 Wire, Auto
	3G-SDI Level B Stream Stream 1, Stream 2
	Network
	Control
	DHCP Off, On
	IP Address (numeric input)
	Subnet (numeric input)
	Information: MAC Address
	LAN
	DHCP Off, On
	IP Address (numeric input)
	Subnet (numeric input)
	Apply Settings (command)
	Information: DHCP Status, IP Address, Subnet, MAC Address
	On Screen Display
	Language US English, UK English
	Timeout $5 \mathrm{sec}, 10 \mathrm{Sec}$, $15 \mathrm{sec}, 20 \mathrm{sec}, 25 \mathrm{sec}, 30 \mathrm{sec}$, infinite
	Position Center, Top Left, Top Right, Bottom Left, Bottom Right
	Messaging Off, On

Notes

Tos Some of the information in this menu map is summarised. See the actual menu on the projector for full detail.

Sos The underlined text represents the factory default value for each setting.

Main Menu	Sub Menus
Setup (continued)	
	System
	Configuration PIP, Edge Blend
	IR Address (slider, value range $\underline{0} \sim 99$)
	Feature Control
	Shutter Open (command)
	Shutter Close (command)
	Power On (command)
	Power Off (command)
	Reset Default Settings (command)
Information	
	Lamps
	Quad lamp models: Lamp 1 Hours, Lamp 1 Starts, Lamp 2 Hours, Lamp 2 Starts, Lamp 3 Hours, Lamp 3 Starts, Lamp 4 Hours, Lamp 4 Starts
	Dual lamp models: Lamp 1 Hours, Lamp 1 Starts, Lamp 2 Hours, Lamp 2 Starts
	Lamp Voltages
	Quad Iamp models: Lamp 1, Lamp 2, Lamp 3, Lamp 4
	Dual lamp models. Lamp 1, Lamp 2
	Configuration Serial Number, Scaler, Interface, Hardware, Firmware, Factory ROM, OSD, Lens, 3D Hardware, 3D Firmware, Sequences
	Input
	Standard
	Control IP
	LAN IP

Notes

This Some of the information in this menu map is summarised. See the actual menu on the projector for full detail.

Do NOT reset the settings unless you are sure that you want to restore ALL the current settings to their factory defaults.

Th $3 D$ configuration information is not available with 2D projectors

Appendix E: Wiring Details

Notes

Signal inputs and outputs

Input 1: VGA

15 way D-type connector
1 R
2 G
3 B
4 unused
5 Digital Ground (H Sync)
6 R Ground

7 B Ground
8 G Ground
$9+5 \mathrm{~V}$
10 Digital Ground (V Sync/DDC)
1 unused
12 SDA
13 H Sync
14 V Sync
15 SCL

Input 2: HDMI		
19 way type A connector		
1	TMDS Data 2+	
2	TMDS Data 2 Shield	18
3	TMDS Data 2-	HDMI: pin view of panel connector
4	TMDS Data 1+	
5	TMDS Data 1 Shield	
6	TMDS Data 1-	
7	TMDS Data 0+	
8	TMDS Data 0 Shield	
9	TMDS Data 0-	
10	TMDS Clock+	
11	TMDS Clock Shield	
12	TMDS Clock-	
13	CEC	
14	not connected	
15	SCL (DDC Clock)	
16	SCA (DDC Data)	
17	DDC/CEC Ground	
18	+5 V Power	
19	Hot Plug Detect	

Output: SPDIF

RCA Phono

Digital audio output from the HDMI input stream.

SPDIF connector

Notes

3-s For full details of all input settings, see Input Configuration in the Operating Guide.

Input 3: DVI			
24 way D-type connector			
Pin 1	TMDS data 2 -	Digital red- (link 1)	
Pin 2	TMDS data 2+	Digital red+ (link 1)	
Pin 3	TMDS data $2 / 4$ shield		
Pin 4	TMDS data 4-	Digital green- (link 2)	DVI: pin view of female connector
Pin 5	TMDS data 4+	Digital green+(link 2)	
Pin 6	DDC clock		
Pin 7	DDC data		
Pin 8	Analog vertical sync		
Pin 9	TMDS data 1-	Digital green- (link 1)	
Pin 10	TMDS data 1+	Digital green+(link 1)	
Pin 11	TMDS data 1/3 shield		
Pin 12	TMDS data 3-	Digital blue- (link 2)	
Pin 13	TMDS data 3+	Digital blue+ (link 2)	
Pin 14	+5V	Power for monitor when in standby	
Pin 15	Ground	Return for pin 14 and analog sync	
Pin 16	Hot plug detect		
Pin 17	TMDS data 0-	Digital blue- (link 1) and digital sync	
Pin 18	TMDS data $0+$	Digital blue+ (link 1) and digital sync	
Pin 19	TMDS data 0/5 shield		
Pin 20	TMDS data 5-	Digital red- (link 2)	
Pin 21	TMDS data 5+	Digital red+ (link 2)	
Pin 22	TMDS clock shield		
Pin 23	TMDS clock+	Digital clock+ (links 1 and 2)	
Pin 24	TMDS clock-	Digital clock- (links 1 and 2)	
C1	Analog red		
C2	Analog green		
C3	Analog blue		
C4	Analog horizontal sync		
C5	Analog ground	Return for R, G, and B signals	

Input 4: 3G-SDI

75 ohm BNC

3G-SDI connector

Input 5: Composite 1

75 ohm BNC

Input 6: S-Video

4 pin mini-DIN	
1	Y Ground
2	C Ground
3	Luminance (Y)
4	Chrominance (C)

S-Video: pin view of female connector

Input 7: Component

4×75 ohm BNC

	RGsB	RGBS	YPrPb
Pb/B	B	B	Pb/Cb
Y/G	G + Sync	G	Y
Pr/R	R	R	Pr/Cr
SYNC		Sync	

Input 8: CVBS

RCA Phono

CVBS connector

Notes

I-> 3G-SDI signals are very high speed digital signals which require better quality coaxial cable than conventional analogue video. The data rate is 3 Gigabits per second.

In choosing cable length and connectors for any installation the frequency response loss in decibels should be proportional to $\sqrt{ } f$, from 1 MHz , to 3 GHz .

I-s
For full details of all input settings, see Input Configuration in the Operating Guide

Notes

I-s High-bandwidth Digital Content Protection (HDCP) is supported on this input.

For full details of all input settings, see Input Configuration in the Operating Guide.
Input 10: SUB/HDMI
19 way type A connector
1
2 \quad TMDS Data 2+ \quad TMDS Data 2 Shield \quad HDMI: pin view of panel connector

Control connections

Update port

RJ45 socket

Service port

USB type B socket

Pin 1	VCC $(+5 \mathrm{~V})$
Pin 2	Data-
Pin 3	Data +
Pin 4	Ground

Wired remote control

3.5 mm mini jack

Tip Power
Ring Signal
Sleeve Ground

pin view of female connector

pin view of female connector

Notes

Th For full details of all network settings, see Network in the Operating Guide.

Sol Plugging in the remote control cable will disable the infra-red.

RS232

9 way D-type connector
1 unused
2 Received Data (RX)
3 Transmitted Data (TX)
4 unused
5 Signal Ground
6 unused
7 unused
8 unused
9 unused

LAN connection

RJ45 socket

Notes

Tos Only one remote connection (RS232 or LAN) should be used at any one time.

Tor full details of all network settings, see Network in the Operating Guide.

Appendix F: Glossary Of Terms

1080p

An HDTV resolution which corresponds to 1920×1080 pixels (a widescreen aspect ratio of 16:9)

3D active glasses

Wireless battery-powered glasses with LCD shutters. Synchronization information is communicated to the glasses by means of an infrared $(I R)$ or radio frequency (RF) emitter which is connected to the Sync Out terminal on the projector. IR or RF pulses are transmitted by the emitter to signal when the left eye and right eye images are being displayed. The glasses incorporate a sensor which detects the emitter's signal and synchronises the left and right eye shutters with the projected image.

3D passive glasses

Passive glasses do not require a power source to work. Light with left-hand polarisation can pass through the left lens and light with righthand polarisation can pass through the right-hand lens. These glasses are used in conjunction with another device which polarizes the image, such as a ZScreen.

Align pattern

A pattern applied to the image where its edge is to be blended with another image. Align patterns are used to position the projectors in the array during the edge blend process.

Anamorphic lens

A special lens which, when used with the TheaterScope aspect ratio, allows watching 2.35:1 content packed in a 16:9 source.

Aperture

The opening of the lens that determines the angle through which light travels to come into focus.

Aspect ratio

The proportional relationship between the width and the height of the projected image. It is represented by two numbers separated by a colon, indicating the ratio of image width and height respectively: for example, 16:9 or 2.35:1.
Not to be confused with resolution.

Blanking (projection)

The ability to intentionally turn off, that is, set to black, areas around the edges of the projected image. It is sometimes referred to as "curtains" since it can be used to blank an area of image that literally falls on the curtains at the side of the screen in a movie theater. Usually no image esizing or geometric correction takes place and the "blanked" part of the image is lost.

Not to be confused with horizontal and vertical blanking (video signal)

Blanking (video signal)

The section of the video signal where there is no active video data.
Not to be confused with blanking (projection).

Blend region

The area of the image that is to overlap with another image in an edge blend setup. Sometimes called overlapping region.

Brightness (electronic control)

A control which adds a fixed intensity value to every pixel in the display, moving the entire range of displayed intensities up or down, and is used to set the black point in the image (see Contrast). In S-Video and Component Video signals, brightness is the same as luminance.

Brightness (optical)

Describes how 'bright' an image that is projected onto a screen appears to an observer.

C
See Chrominance.

Chrominance

Also known as 'C', this is the component, or pair of components, of an S-Video or Component Video signal which describes color difference information.

Cold mirror

A mirror that preferentially reflects or transmits infra-red light. In a projector, a cold mirror is used to reflect the visible component of the lamp beam into the illumination optics and transmit the unwanted infrared radiation into an absorber.

Color difference

In S-Video or Component Video signals, the difference between specified colors and the luminance component. Color difference is zero for monochrome images.

Color gamut

The spectrum of color available to be displayed

Color temperature

The position along the black body curve on the chromaticity diagram, normally quoted in Kelvin. It takes into account the preset values for color balance in the service set-up to take up the variations in the prism. The projector allows you to adjust this temperature (i.e. adjust the picture color temperature)

ColorMax

A method of accurately color-matching projectors together.

Component video

A three-wire or four-wire video interface that carries the signal split into its basic RGB components or luminance (brightness) and two-colordifference signals (YUV) and synchronization signals.

Composite video

A signal line that carries luminance, chrominance, synchronization pulses and blanking.

Contrast (electronic control)

Contrast (optical)

The intensity difference between the darkest and lightest areas of the screen.
Cr, Cb
Color difference signals used with ' φ ' for digital Component Video inputs. They provide information about the signal color. Not to be confused with Pr, Pb

Crop
Remove part of the projected image.
Alternatively, fit an image into a frame with a different aspect ratio by removing part of the image. The image is resized so that either its length or its width equals the length or width of the frame, while the other dimension has moved outside the frame; the excess area is then cut out.

Dark time

The time inserted between frames when using 3D active glasses, to avoid ghosting caused by switching time between left and right eye

DDC (Display Data Channel)

A communications link between the source and projector. DDC is used on the HDMI, DVI and VGA inputs. The link is used by the source to read the EDID stored in the projector

Deinterlacing

The process of converting interlaced video signals into progressive ones.

DHCP (Dynamic Host Configuration Protocol)

A network protocol that is used to configure network devices so that they can communicate on an IP network, for example by allocating an IP address.

DMD ${ }^{\text {TM }}$ (Digital Micromirror Device ${ }^{\text {TM }}$)

The optical tool that transforms the electronic signal from the input source into an optical image projected on the screen. The DMD ${ }^{T M}$ of a projector has a fixed resolution, which affects the aspect ratio of the projected image
A Digital Micromirror Device ${ }^{T M}\left(D^{T M} D^{T M}\right)$ consists of moving microscopic mirrors. Each mirror, which acts as a pixel, is suspended between two posts by a thin torsion hinge. It can be tilted to produce either a bright or dark pixel.

Edge blend

A method of creating a combined image by blending the adjoining edges of two or more individual images.

Edge tear

An artifact observed in interlaced video where the screen appears to be split horizontally. Edge tears appear when the video feed is out of sync with the refresh rate of the display device.

EDID (Extended Display Identification Data)

Information stored in the projector that can be read by the source.
EDID is used on the HDMI, DVI and VGA inputs, allowing the source to automatically configure to the optimum display settings.

EDTV (Enhanced Definition Television)

A progressive digital television system with a lower resolution than HDTV.

Field

In interlaced video, a part of the image frame that is scanned separately. A field is a collection of either all the odd lines or all the even lines within the frame.

Frame

One of the many still images displayed in a sequence to create a moving picture. A frame is made of horizontal lines of pixels. For example, a 1920×1080 frame consists of 1080 lines, each containing 1920 pixels. In analog video frames are scanned one at a time (progressive scanning) or split into fields for each field to be scanned separately (interlaced video).

Frame rate

The number of frames shown per second (fps). In TV and video, a frame rate is the rate at which the display device scans the screen to "draw" the frame.

Frame rate multiplication

To stop low frame rate 3D images from flickering, frame rate multiplication can be used, which increases the displayed frame rate by two or three times.

Gamma

A nonlinear operation used to code and decode luminance. It originates from the Cathode Ray Tube technology used in legacy television sets.

Ghosting

An artifact in 3D image viewing. Ghosting occurs when an image intended for one eye is partially seen by the other eye
Ghosting can be removed by optimizing the dark time and sync delay.

Global setting

A projector setting that affects all inputs. In the OSD, global settings are indicated with a globe icon.

HDCP (High-bandwidth Digital Content Protection)

An encryption scheme used to protect video content.

HDTV (High Definition Television)

A television system with a higher resolution than SDTV and EDTV. It can be transmitted in various formats, notably 1080p and 720p.

Hertz (Hz)

Cycles per second.

Horizontal Scan Rate

The rate at which the lines of the incoming signal are refreshed. The rate is set by the horizontal synchronization from the source and measured in Hertz.

$\mathrm{Hs}+\mathrm{Vs}$

Horizontal and vertical synchronization.

Hue

The graduation (red/green balance) of color (applicable to NTSC)

nterlacing

A method of updating the image. The screen is divided in two fields, one containing every odd horizontal line, the other one containing the even lines. The fields are then alternately updated. In analog TV interlacing was commonly used as a way of doubling the refresh rate without consuming extra bandwidth.

Interleaving

The alternation between left and right eye images when displaying 3D.

IRE

A unit used to show the range from black to white in Composite Video signals.

LED (Light Emitting Diode)

An electronic component that emits light.

Lens extension

The distance between the front of the projector and the front of the mounted lens. When a long lens is intended to cover a relatively short throw distance, lens extensions should be taken into account when calculating the throw ratio as the error margin for such calculations should not exceed 5\%.

Letterboxing

Black margins at the top and bottom of the image. Letterboxing appears when a wider image is packed into a narrower frame without changing the original aspect ratio.

Lumen

A photometric unit of radiant power. For projectors, it is normally used to specify the total amount of emitted visible light

Luminance

Also known as ' Y, this is the part of an S-Video or Component Video signal which affects the brightness, i.e. the black and white part.

Modal setting

A projector setting that only affects the currently displayed input.

Noise

Electrical interference displayed on the screen.

NTSC (National Television Standards Committee)

The United States standard for television - 525 lines transmitted at 60 interlaced fields per second.

OSD (on-screen display)

The projector menus allowing you to adjust various global and modal settings.

Overlapping region

See blend region.

PAL (Phase Alternate Line)

The television system used in the UK, Australia and other countries - 625 lines transmitted at 50 interlaced fields per second.

Pillarboxing

Black margins at the left and right of the image. Pillarboxing appears when a narrower image is packed into a wider frame without changing the aspect ratio.

Pixel

Short for Picture Element. The most basic unit of an image. Pixels are arranged in lines and columns. Each pixel corresponds to a micromirror within the $D M D^{\text {TM }}$; resolutions reflect the number of pixels per line by the number of lines. For example, a 1080p projector contains 1080 ines, each consisting of 1920 pixels

Pond of mirrors

Area around the periphery of the $D M D^{T M}$. containing inactive mirrors. The pond of mirrors may cause artifacts, for example during the edge blending process.

Pr, Pb

Color difference signals used with ' Y ' for analog Component Video inputs. They provide information about the signal color. Not to be confused with $\mathbf{C r}, \mathbf{C b}$

Primary colors

Three colors any two of which cannot be mixed to produce the third. In additive color television systems the primary colors are red, green and blue

Progressive scanning

A method of updating the image in which the lines of each frame are drawn in a sequence, without interlacing.

Pulldown

The process of converting a 24 fps film footage to a video frame rate (25 fps for PAL/SECAM, 30 fps for NTSC) by adding extra frames. DP projectors automatically carry out reverse pulldown whenever possible.

Resolution

The number of pixels in an image, usually represented by the number of pixels per line and the number of lines (for example, 1920×1200).

RGB (Red, Green and Blue)

S-curve

A factor applied during edge blend to gradually reduce the light output within the blend region so the combined light output of all overlapping images remains a constant. Without an s-curve overlapping areas would be brighter than the rest of the image due to accumulated light from more than one projector

S-Video

A video signal which has separate Y and C signals.

Saturation

The amount of color in an image.

Scope

An aspect ratio of 2.35:1.

SDTV (Standard Definition Television)

An interlaced television system with a lower resolution than HDTV. For PAL and SECAM signals, the resolution is 576 i ; for NTSC it is 480 i .

SECAM (Sequential Color with Memory)

The television system used in France, Russia and some other countries - 625 lines transmitted at 50 interlaced fields per second.

Segmentation

The process of splitting a source image into segments. In edge blending, segmentation may be used to assign a different segment to each projector in the array. Segmentation can be carried out within the projectors (each projector receives the whole image and only projects its own segment), or externally (each projector receives its own segment).

SPDIF

SX+
A display resolution of 1400×1050 pixels with a $4: 3$ screen aspect ratio. (Shortened from SXGA+, stands for Super Extended Graphics Array Plus.)

Synchronization

A timing signal used to coordinate an action.

Test pattern

A still image specially prepared for testing a projection system. It may contain various combinations of colors, lines and geometric shapes.

TheaterScope

An aspect ratio used in conjunction with a special anamorphic lens to display 2.35:1 images packed into a 16:9 frame.

Throw distance

The distance between the screen and the projector.

Throw ratio
The ratio of the throw distance to the screen width.

TRC (Throw ratio correction)

A special number used in calculating throw distances and throw ratios when the image does not fill the width of the $D M D$.
TRC is the ratio of the $D M D^{\text {TM }}$ aspect ratio to the image source aspect ratio:
$T R C=\frac{D M D^{T M} \text { aspect ratio }}{\text { Source aspect ratio }}$
TRC is only used in calculations if it is greater than 1.

UXGA

A display resolution of 1600×1200 pixels with a 4:3 screen aspect ratio. (Stands for Ultra Extended Graphics Array.)

Vertical Scan Rate

The rate at which the frames of the incoming signal are refreshed. The rate is set by the vertical synchronization from the source and measured in Hertz.

Vignetting

Optical cropping of the image caused by the components in the projection lens. This can happen if too much offset is applied when positioning the image using the lens mount

Vista

An aspect ratio of $1.66: 1$

Warp

A set of projector functions that allow you to intentionally distort the image, for example in order to fit an arbitrarily shaped screen.

WUXGA

A display resolution of 1920×1200 pixels with a $16: 10$ screen aspect ratio. (Stands for Widescreen Ultra Extended Graphics Array.

Y

Notes

This is the luminance input (brightness) from an S-Video or Component Video signal.

Yuv
See Pr, Pb.

ZScreen

A special kind of light modulator which polarizes the projected image for 3D viewing. It normally requires that images are projected onto a silver screen. The ZScreen is placed between the projector lens and screen. It changes the polarization of the projected light and switches between left- and right-handed circularly polarized light at the field rate.

Technical Specifications

Digital Projection reserves the right to change product specifications without prior notice.

Models

The specifications on these pages refer to the following projectors:

Series name(s)	Lamps	Resolution	Part number, 3D	Part number, 2D	Lumens	Contrast ratio
Titan Super Quad, Titan Quad 2000	$4 \times 465 \mathrm{~W}$ High Intensity Discharge	WUXGA	113-104	n/a	20,000	2,000:1
		1080p	113-103	n/a	20,000	2,000:1
		SX+	113-102	n/a	20,000	2,000:1
Titan Quad HB	4×400 W HID High Intensity Discharge	WUXGA	111-875	113-134	16,000	2,000:1
		1080p	111-872	113-132	16,000	2,000:1
		SX+	111-869	113-130	16,000	2,000:1
Titan Quad UC	$\begin{aligned} & 4 \times 400 \text { W HID } \\ & \text { High Intensity Discharge } \end{aligned}$	1080p	112-145	n/a	8,000	5,000:1
Titan 930	2×465 W HID High Intensity Discharge	WUXGA	114-441	114-435	15,000	2,000:1
		1080p	114-440	114-434	14,500	2,000:1
		SX+	114-439	114-433	15,000	2,000:1
Titan 800	$2 \times 400 \text { W HID }$ High Intensity Discharge	WUXGA	112-489	113-128	12,000	2,000:1
		1080p	112-487	113-126	12,000	2,000:1
		SX+	112-485	113-124	12,000	2,000:1

Color system: 3-chip DLP®
Display type: $3 \times 0.95^{\prime \prime}$ DarkChip $^{\text {TM }}$ DMD $^{\text {TM }}$
DMD specification (native):

WUXGA	1080p	SX+
1920×1200 pixels	1920×1080 pixels	1400×1050 pixels

$+/-12^{\circ}$ tilt angle
Fast transit pixels for smooth greyscale and improved contrast.

Notes
his HB (High Brightness) projectors are designed to produce maximum light output and should be used with HB lenses. UC (Ultra Contrast) models produce maximum contrast and should be used with UC lenses.

Inputs and outputs

Type	Connector	Qty	
Video \& Computer (all models)			
DVI-D / DVI-A	DVI-I	1	
HDMI 1.3	HDMI	1	
3G-SDI	BNC	1	
VGA / Analog RGB	15-pin D-Sub	1	
Component Video	$4 \times$ BNC	1	
S-Video	$4-$ pin Mini DIN	1	
Composite Video	RCA	1	
Composite Video	BNC	1	
Video \& Computer (3D models)			
Main - Dual Link DVI-D	DVI-I	1	
Sub - HDMI 1.4	DVI-I	1	
Audio (all models)			
SPDIF Digital Output	RCA	1	

Type	Connector	Qty
Communication \& Control		
3D Sync Out	BNC	1
3D Sync In	BNC	1
LAN	RJ45	1
RS232	9-pin D-Sub	1
Wired Remote In	3.5 mm Stereo Jack	1
Wired Remote Out	3.5 mm Stereo Jack	1
Update Port	RJ45	1
Service Port	USB Type B	1

Bandwidth

- 170 MHz on analog RGB
- 165 Megapixels per second on HDMI and DVI
- 297 Megapixels per second on Dual Link DVI

Remote control and keypad

- Addressable IR remote control, wireless and wired with loop-through
- On-board keypad

Automation control

- RS232
- LAN

Color temperature

- User selectable from 3200 to 9000 K

Series	Lamp type	Part numbers	Typical lamp life (full power)	Typical lamp life (Eco mode)
Titan Super Quad, Titan Quad 2000	$4 \times 465 \mathrm{~W}$ High Intensity Discharge	113-628 (single lamp) 113-715 (lamp \& filter kit, 4 lamp) 113-714 (lamp \& filter kit, 2 lamp)	1500 hours Up to 6000 hours in lamp sequential mode	2000 hours Up to 8000 hours in lamp sequential mode
Titan Quad	4×400 W HID High Intensity Discharge	111-896 (single lamp \& housing)	1500 hours Up to 6000 hours in lamp sequential mode	2000 hours Up to 8000 hours in lamp sequential mode
Titan 930	2×465 W HID High Intensity Discharge	113-628 (single lamp) 113-714 (lamp \& filter kit, 2 lamp)	1500 hours Up to 3000 hours in lamp sequential mode	2000 hours Up to 4000 hours in lamp sequential mode
Titan 800	2×400 W HID High Intensity Discharge	111-896 (single lamp \& housing)	1500 hours Up to 3000 hours in lamp sequential mode	2000 hours Up to 4000 hours in lamp sequential mode

Lenses

Detailed information about available lenses can be found in Appendix A: Lens Part Numbers
Further information about lens offsets can be found in Positioning The Image > Maximum offset range.

Lens mount

- Motorised and programmable shift, zoom and focus. Intelligent lens memory with 5 user-definable preset positions.

Mechanical mounting

- Front/Rear Table
- Front/Rear Ceiling
- Adjustable Front/Rear Feet
- Rugged, staging tolerant chassis with integrated handles.
- Optional RapidRig ${ }^{\text {TM }}$ frame with integrated pitch, roll and yaw adjustments.

Orientation

- Table Top or Inverted:
 Yes

- Pointing Down: No
- Roll (Portrait): No

Notes

Thos Information on lenses in this guide:

- Appendix A: Lens Part Numbers - detailed descriptions of available lenses.
- Maximum offset range - lens offsets.
- Choosing A Lens - a step-by-step guide on calculating throw ratios.
- Appendix B: Lens Charts - quick reference charts showing throw distances for commonly used aspect ratios.See also the lens calculator on the Digital Projection website.

Electrical and physical specifications

- Power requirements
- Power Consumption
- Thermal Dissipation
- Fan Noise
- Operating Temperature
- Storage Temperature
- Operating Humidity
- Weight
- Dimensions

200-240 VAC for Quad, Super Quad and Quad 2000 series
220 VAC for Titan 930 series
100-240 VAC for Titan 800 series
$50-60 \mathrm{~Hz}$ (single phase)
2400 W for Super Quad and Quad 2000 series 2100 W for Quad series
1160 W for Titan 930 series
1220 W for Titan 800 series
8191 BTU/hr for Super Quad and Quad 2000 series 7165 BTU/hr for Quad series,
3960 BTU/hr for Titan 930 series, 4164 BTU/hr for Titan 800 series

48 dBA
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (32 to 104 F)
$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (14 to 122 F)
20% to 80% non-condensing
approximately 39 kg (86 lbs) without lens
L: 68.8 cm ; W: 58.5 cm ; H: 25.8 cm ;
(L: $27.1 \mathrm{in} ; \mathrm{W}: 23.1 \mathrm{in} ; \mathrm{H}: 10.2 \mathrm{in}$;)

Safety \& EMC regulations

- CE, FCC Class A, CCC

Accessories

Accessory	Relevant model(s)	Part number
RapidRig ${ }^{\text {TM }}$ Frame	All	$111-265$
Ceiling Mount Kit w/ plate \& 500 mm pole	All	$112-937$
Infrared Remote (Replacement)	All	$105-023$

DIGITAL
 PROJECTION

Contact Information

Digital Projection Limited

Greenside Way，Middleton Manchester M24 1XX，UK Registered in England No． 2207264 Registered Office：as above
Tel（＋44） 1619473300 $\begin{array}{ll}\text { Tel } & (+44) 1619473300 \\ \text { Fax } & (+44) 1616847674\end{array}$ enquiries＠digitalprojection．co．uk service＠digitalprojection．co．uk www．digitalprojection．co．uk

Digital Projection Inc．

55 Chastain Road，Suite 115 Kennesaw，GA 30144，USA
Tel（＋1） 7704201350 Fax（＋1） 7704201360 powerinfo＠digitalprojection．com www．digitalprojection．com

Digital Projection China

中国 北京市 朝阳区 苟药居北里101号世奥国际中心A座2006室（100029） Rm A2006
ShaoYaoJu 101 North Lane Shi Ao International Center Chaoyang District
Beijing 100029，PR CHINA
Tel
Fax echsupport＠dp－china．com．cn ww．dp－china．com．cn

Digital Projection Asia

16 New Industrial Road 02－10 Hudson Technocentre Singapore 536204
Tel（＋65）6284－1138
Fax（＋65）6284－1238

[^0]:

